
Warwick Mathematics Exchange

MA251

Algebra I

2023, April 20th

Desync, aka The Big Ree

Front Matter Table of Contents

Contents

Table of Contents i

1 Review 1
1.1 Mathematical Interpretation . 1
1.2 Basis Vectors, Span & Linear Independence . 2
1.3 Linear Transformations . 3

1.3.1 Transformations as Matrix-Vector Multiplication 3
1.4 Composition as Matrix-Matrix Multiplication . 5
1.5 Change of Basis . 7
1.6 Transformations in Different Bases . 10
1.7 Eigenvectors . 13

2 Jordan Canonical Form 19
2.1 Generalised Eigenspaces . 19
2.2 Cayley-Hamilton Theorem . 20
2.3 Calculating Minimal Polynomials . 20
2.4 Jordan Chains . 21
2.5 Computing the Jordan Canonical Form . 23
2.6 Review . 32

3 Matrix Functions 32
3.1 Matrix Powers . 32
3.2 Lagrange Interpolation . 33
3.3 Matrix Exponentials . 34

3.3.1 Recurrence Relations . 34
3.3.2 Differential Equations . 35

4 Bilinear Maps 37
4.1 Bilinear Forms . 39
4.2 Quadratic Forms . 40
4.3 Bases for Quadratic Forms . 41
4.4 The Gram-Schmidt Process . 43
4.5 Orthogonal Transformations . 46
4.6 Orthonormal Bases for Bilinear Forms . 48
4.7 Reduction of Second Degree Polynomial Equations . 50
4.8 Singular Value Decomposition . 52

5 Sesqulinear Forms 55

6 Operators on Hilbert Spaces 55

7 Finitely Generated Abelian Groups 55
7.1 Review . 55
7.2 Free Abelian Groups . 58
7.3 Unimodular Smith Normal Form . 60
7.4 Subgroups of Free Abelian Groups . 63
7.5 General Finitely Generated Abelian Groups . 64
7.6 Finite Abelian Groups . 66

Algebra I | i

Front Matter Preface

Introduction

In Algebra I: Advanced Linear Algebra, we continue our work on vector spaces from MA106 Linear
Algebra. We begin by introducing the concept of matrix polynomials before dipping into the spectral
theory of matrices with generalised eigenspaces and the Jordan canonical form. We then cover bilinear
maps and quadratic forms, before decomposing and classifying finitely generated abelian groups.

This document is intended to broadly cover all the topics within the Algebra I module. All knowledge
and algorithms contained within the module guide for MA106 will be assumed as prior knowledge in this
document. For a recap of Linear Algebra, you can see the module guides for MA106, but I also recom-
mend viewing my reference book, where you can find connections between different areas conveniently
hyperlinked together in one file.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2022 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

Scalars are written in lowercase italics, c, or using greek letters.

Vectors are written in lowercase bold, v, or rarely overlined, ←→v , where more contrast or clarity is
required.

Matrices are written in uppercase bold, A.

Note: transformations represented by matrices may be written in just italics, as functions often are, i.e.,
s(v) = Av.

History
First Edition: 2023-04-06∗

Current Edition: 2023-04-20

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.

Algebra I | ii

https://drive.google.com/file/d/1BD8KvjNtC1rLTcWGz8aPsEyzPuGKRpP-
mailto:Warwick.Mathematics.Exchange@gmail.com
mailto:Warwick.Mathematics.Exchange@gmail.com

Front Matter Preface

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

Algebra I | iii

https://ko-fi.com/desync
https://ko-fi.com/desync

MA251 Review

1 Review

The sections on change of basis and eigenvectors from MA106 is repeated here as they are particularly
important, but for a full review of past material, see the MA106 guide or the reference book.

1.1 Mathematical Interpretation
In physics, vectors are often treated as arrows pointing in space - some kind of quantity which has a
magnitude and a direction. As long as the length and direction of a vector are the same, it’s the same
vector, no matter where it is. For example, you might model the velocity of an object as a vector, and
consider the velocity as staying the same if the length and direction remain constant.

Sets of vectors that all lie within a plane are two-dimensional, and those in the space we live in are
three-dimensional. Picturing an arbitrary n-dimensional vector in this context can be rather tricky, due
to the limitations of our reality.

On the other hand, in computer science, vectors are ordered lists of numbers, or tuples. For example,
you might model the population of two species of animals, say, foxes and rabbits, in a given area with a
pair of numbers, the first representing the number of foxes, and the second representing the number of
rabbits. Note that order matters; two vectors are not equal if the numbers are swapped around.

In this context, we’d be modelling the populations as a two-dimensional vector. What makes the vector
two-dimensional is that the list has two elements within it.

In maths, we are much more general. A vector is anything where we have some kind of notion of adding
two objects, our vectors, and multiplying those vectors by a number, called a scalar. A vector space is
just a set whose elements are vectors.

=

2 =

−→v +−→w
2−→v

[
a
b

]
+

[
c
d

]
=

[
a+ c
b+ d

]
2

[
e
f

]
=

[
2e
2f

]
But, in a sense, what makes a vector space, a vector space, are these fundamental operations, indepen-
dent of how we represent the vectors themselves - it doesn’t matter whether you think about vectors
fundamentally being arrows, which happen to have a nice numerical representation, or a list of numbers,
which happen to have a nice visual representation as arrows. The usefulness of linear algebra is less to
do with specific representations of vectors, and more to do with the ability to translate between and
equate these different views.

This very general view encompasses both the arrows and ordered lists, and more, but in exchange, is
very abstract, and can be possibly more difficult to pick up.

For now, we will first focus on a geometric interpretation of vectors, before moving on to more abstract
vector spaces.

When we say a vector, for now, picture an arrow within a coordinate system, with the tail rooted at the
origin. Note that this is somewhat distinct from the physics viewpoint discussed above, as vectors in
that sense aren’t tied to a specific coordinate system, and are free to move about.

This specific view is very helpful as we can then use matrix algebra in our calculations, and changing to
a computer science tuple view is just as easy as reading off the coordinates of the head of the vector.

Algebra I | 1

https://drive.google.com/file/d/1BD8KvjNtC1rLTcWGz8aPsEyzPuGKRpP-
https://drive.google.com/file/d/1BD8KvjNtC1rLTcWGz8aPsEyzPuGKRpP-

MA251 1.2 Basis Vectors, Span & Linear Independence

1.2 Basis Vectors, Span & Linear Independence
When we write a vector as a pair of coordinates, say,

v =

[
2
3

]
you can think of these coordinates as scalars scaling two vectors.

In the Cartesian coordinate system, there are two very special vectors we often use; the vector pointing
to the right with length 1, denoted ı̂, and the vector pointing up with length 1, denoted ȷ̂.

Thinking of the coordinates as scalars, we scale ı̂ by 2, and ȷ̂ by 3, before adding them together to give
v, so v is the sum of two scaled vectors. Though this is an extremely simple example, this concept of
adding two scaled vectors is worth keeping in mind, as it will soon come up, a lot. Any time we scale up
vectors and add them together, it’s called a linear combination of the vectors.

Together, ı̂ and ȷ̂ have a special name. They are the basis vectors of the Cartesian coordinate system.
Specifically, we call them the canonical or standard basis vectors.

Informally, what it means to form a basis is that, when you use coordinates as scalars, the basis vectors
are what the scalars act on. But this brings up a pretty interesting question. What if we picked other
basis vectors?

Think about all the arrows you can get by picking two scalars, using them to scale these two arrows,
then adding the results together. For these particular two arrows, the answer is that you can reach every
possible two-dimensional arrow. You can see this by the fact that the transformed grid covers all of the
2D plane.

A new pair of basis vectors like this also gives us a valid way to translate between pairs of numbers and
arrows in the plane. But notice that this translation is different from the canonical basis. [1,1] in this
new basis certainly points to a different place than in the canonical basis. We will go into more detail
later on, on how coordinates in different bases are related, but for now, just appreciate that any time we
describe vectors numerically, it depends on some implicit arbitrary choice of basis vectors.

Now, if we allow the scalars to vary through all possible pairs of values, considering the linear combination
given by each pair, we have three possible situations. For most pairs of vectors, we can reach every point
in the plane, like in the example above. But if your two vectors line up and are parallel, then the resulting
vector is also forced onto the line passing through the origin, parallel to the vectors.

Algebra I | 2

MA251 1.3 Linear Transformations

Compared to the previous case, here, the transformed grid is compressed onto a single line.

Additionally, if both vectors are the zero vector, you’re just stuck on the origin. The set of all possible
vectors you can reach with a linear combination of a set of vectors is the span of the vectors. So, we can
say that the span of the first pair of vectors above is the entire Cartesian plane (or equivalently, we say
that the Cartesian plane is spanned by those two vectors, or that those two vectors form a spanning set
of the Cartesian plane), while the span of the second pair of vectors is just a line, and the span of two
zero vectors is just the single point on the origin.

In this second case, we note that one of the vectors is somewhat redundant. We can still access the full
line, just using one of the vectors. In this case, we say that the vectors are linearly dependent - one of
the vectors in the set can be expressed as a linear combination of the others, since it already lies within
the span of the others.

Conversely, if each new vector adds a new dimension to the span, we say that the vectors are linearly
independent.

Symbolically, we say that a set of vectors, v1,v2,v3 · · · ,vn are linearly independent if the equation,

a1v1 + a2v2 + · · ·+ anvn = 0

holds only if a1 = a2 = · · · = an = 0. In other words, if you can find a way to add up scaled versions of
your vectors to get back to the origin, they are not linearly independent.

Now, we can more formally define a basis of a vector space as a set of linearly independent vectors that
span the space, and the dimension of a vector space is the number of vectors in its basis.

If a linearly independent set of vectors span a space, then every vector in that space can be written as
a unique linear combination of those vectors. If this spanning set is not linearly independent, then this
linear combination representation of vectors will not be unique (which is why such a set is not usable as
a basis - coordinates are not unique). Any two bases of the same vector space contain the same number
of vectors. (Take a moment to think about why these properties are true, given the definitions we have
just seen.)

1.3 Linear Transformations

1.3.1 Transformations as Matrix-Vector Multiplication

As the name suggests, in linear algebra, we only consider transformations that are linear.

Let V andW be vector spaces over a field, K (we will discuss what a field is later). A function f : V →W ,
is linear if for any two vectors, u,v ∈ V , and any scalar, c ∈ K,

• f(u+ v) = f(u) + f(v) (additivity or operation of vector addition)

• f(cu) = cf(u) (degree 1 homogeneity or operation of scalar multiplication)

In other words, it does not matter whether the linear map is applied before or after the operations
of vector addition and scalar multiplication. In particular, linear maps preserves linear combinations.
Geometrically, a transformation is linear if the origin is fixed in place, and all lines remain lines under
the transformation.

Although this is a rather restrictive condition, there are still a vast range of linear transformations. So,
how do we represent these transformations numerically? Given a pair of numbers - a point, a coordinate
- how do we find the image of that pair under any given transformation?

Looking back at the definition of a linear transformation, it doesn’t matter whether we apply the map
before or after the operations of vector addition and scalar multiplication, and, as discussed earlier, every
vector can be seen as scaling and adding up the basis vectors - so, if we keep track of where the basis
vectors are mapped under the transformation, everything else immediately follows on.

Algebra I | 3

MA251 1.3 Linear Transformations

For example, if we know that,

ı̂ 7→
[
1
−3

]
ȷ̂ 7→

[
−2
4

]
then we can easily tell where any arbitrary vector,

v =

[
x
y

]
is mapped, by using the linear properties of these maps and breaking it down into its constituent parts,
v = x̂ı = ŷȷ, so, [

x
y

]
7→ x

[
1
−3

]
+ y

[
−2
4

]
=

[
1x− 2y
−3x+ 4y

]
In doing so, we see that every two-dimensional linear map is completely determined by just 4 numbers
- the coordinates of the image of ı̂ and ȷ̂. Or more generally, the coordinates of the image of the basis
vectors of the relevant space. But sticking with ı̂ and ȷ̂ for now, we often like to package these coordinates
into an array of numbers - a matrix.

We do this in such a way that the first column contains the coordinates of where ı̂ lands, and the second,
the coordinates for ȷ̂. [

1 −2
−3 4

]
︸︷︷︸

ı̂
︸︷︷︸

ȷ̂

If you have the matrix for some linear transformation, and you want to know the image of any given
vector, you take the coordinates of that vector, multiply them by the respective columns of the matrix,
and sum the results. In other words, we are adding up the the scaled versions of the new basis vectors.

For an arbitrary matrix and vector, [
a b
c d

]
,

[
x
y

]
the image of the vector is given by,[

x
y

]
7→ x

[
a
c

]
+ y

[
b
d

]
=

[
ax+ by
cx+ dy

]

Since the matrix really represents a linear map - a kind of function - let’s write it to the left of the vector
like we normally do with functions, and give the vector as the function variable.[

a b
c d

]([
x
y

])
=

[
ax+ by
cx+ dy

]
But the brackets are somewhat clumsy, so we often drop them from this expression, and read the function
as multiplication, [

a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
and, we’ve just discovered matrix-vector multiplication. If you’ve ever wondered why matrix-vector
multiplication is what it is, this is why: it stems from linear transformations being applied to vectors.

Algebra I | 4

MA251 1.4 Composition as Matrix-Matrix Multiplication

1.4 Composition as Matrix-Matrix Multiplication
Now, we often don’t study transformations in isolation: what happens if we apply two transformations
to a vector, one after another?

For example, consider the transformations given by shearing parallel to the horizontal axis, and rotating
by 90◦ clockwise.

s[
1 1
0 1

]

r[
0 1
−1 0

]

Because of linearity, the overall effect of applying the shear then rotation is another linear transformation,
distinct from both the shear and rotation alone. The new transformation is the composition of the two
original transformations.

s r

r◦s

(We read right to left for composition. This notation stems from function notation; (r ◦ s)(̂ı) = r(s(̂ı)),
so we apply s first.)

Now, being a linear transformation, this composition also has a matrix representation. Above, we see
that,

ı̂ 7→
[
0
−1

]
ȷ̂ 7→

[
1
−1

]
(1)

so the composition matrix is given by, [
0 1
−1 −1

]

Algebra I | 5

MA251 1.4 Composition as Matrix-Matrix Multiplication

This matrix gives the effect of shearing, then rotating, in a single transformation - one action, instead of
two successive ones.

We can otherwise write the composition out in terms of the original transformations by multiplying a
vector on the left by the shear, to give the image under the shear, then multiplying again by the rotation,
to apply it after.

[
0 1
−1 0

]
︸ ︷︷ ︸
Rotation

[1 1
0 1

]
︸ ︷︷ ︸

Shear

([
x
y

])
Given our definition of matrix-vector multiplication, this is exactly what it means to apply linear trans-
formations as matrices to a vector.

But, given that this pair of transformations has the same overall effect as the composition matrix on any
vector, it seems sensible to write [

0 1
−1 0

] [
1 1
0 1

]
=

[
0 1
−1 −1

]
More generally, two arbitrary transformation matrices will give another transformation matrix. You
probably know how matrix multiplication is defined, but put that knowledge aside for a second, and we
will rederive that definition. [

a b
c d

]
︸ ︷︷ ︸

M2

[
A B
C D

]
︸ ︷︷ ︸

M1

=

[
? ?
? ?

]

To figure out the overall matrix, we need to follow where ı̂ goes. By how we construct matrices in the
first place, the image of ı̂ is just the first column of M1. To see where that column is mapped, we then
multiply that column by M2: [

a b
c d

] [
A
C

]
Using our definition of matrix-vector multiplication we defined earlier, this gives[

a b
c d

] [
A
C

]
= A

[
a
c

]
+ C

[
b
d

]
=

[
Aa+ Cb
Ac+ Cd

]
which is the first column of the composition matrix. Similarly, for ȷ̂, we have,[

a b
c d

] [
B
D

]
= B

[
a
c

]
+D

[
b
d

]
=

[
Ba+Db
Bc+Dd

]
so the composition matrix is, [

Aa+ Cb Ba+Db
Ac+ Cd Bc+Dd

]
This is where the arbitrary-feeling “rows into columns” definition matrix multiplication you learned at
A-level actually comes from. It’s just how the numbers work out when we compose linear transformations
together.

Furthermore, seeing matrix multiplication as composition of transformations makes the various properties
of matrix multiplication much easier to understand.

Algebra I | 6

MA251 1.5 Change of Basis

For example, rotating then shearing, and, shearing then rotating, clearly give different results, so matrix
multiplication is not commutative. This is a trivial property you can verify in your head, without having
to compute anything at all.

Similarly, matrix multiplication is clearly assocative: applying transformation A, then (B then C) is
clearly the same thing as applying transformation (A then B), then C. There’s nothing to prove here;
it’s the same three transformations being applied in the same order both ways.

Trying to prove these properties symbolically is a nightmare, but, as transformation compositions, they’re
trivial. Not only are these valid proofs, they’re good intuitive explanations as to why these properties
should be true.

1.5 Change of Basis
Assigning numbers to vectors (that are interpreted as arrows rooted at the origin) depends on some
choice of basis vectors to provide a meaningful translation between geometry and algebra.

In our standard system, we would say that this green vector has coordinates,[
3
2

]
because going from its tail to its tip requires moving 3 units to the right, and 2 units up. We think of
these coordinates as scalars - something that scales up a vector. In this case, we implicitly take the first
coordinate to scale ı̂, and the second to scale ȷ̂, before adding up the result, with all the information
about distance and direction tied up in our choice of basis vectors.

3̂ı

3̂ȷ

We call these ways to translate between these arrows and sets of numbers a coordinate system. The
choice of ı̂ being the target of the first scalar, and ȷ̂ being the target of the second scalar gives us the
standard Cartesian coordinate system.

But of course, other basis vectors are available.

Say we have a friend, Alice, who uses a different set of basis vectors: v1, which points to the bottom-right
and is acted upon by the first scalar of a coordinate, andv2, that points to the top right and is acted
upon by the second scalar.

Algebra I | 7

MA251 1.5 Change of Basis

We can draw the same green vector again - the one we would describe as [3,2] - on to her grid. Alice
would then describe this green vector as, [

1
3
2

]
What this means is that, to get to the tip of that vector using her basis vectors, is to scale up v1 by 1,
v2 by 3

2 , then add up the results

1v1

3
2v2

Whenever Alice uses coordinates to describe a vector, she thinks of the first coordinate scaling v1, and
the second, scaling v2, just like how we scale ı̂ and ȷ̂, respectively.

We note that, although the two coordinates look different, they actually represent the same vector, just
in two different coordinate systems. We’re both describing the same things, but in a different language.[

3
2

]
=

[
1
3
2

]
I’ve been showing the choices of bases using colour (and will continue doing so), but it is helpful to have
notation for this as well. To do this, we give a label to each choice of basis, and subscript our vectors
with that label. Often, this is done with set brackets (for example, {ei}) to indicate that the basis is a set
of vectors, but here, for clarity, I will label the Cartesian coordinate system as E, and Alice’s coordinate
system as A. [

3
2

]
E

=

[
1
3
2

]
A

But how did we find that second set of coordinates? More generally, how do we find the coordinates of
some vector in some given different coordinate system? Well, we should first look at the basis vectors of
the coordinate systems in question.

We can describe the basis vectors of the target coordinate system in terms of our standard one. In E,
Alice’s basis vectors are,

v1 =

[
3
2
−1

]
E

, and v2 =

[
1
2

]
E

Algebra I | 8

MA251 1.5 Change of Basis

But it is important to note that, in her system, these vectors are

v1 =

[
1
0

]
A

, and v2 =

[
0
1

]
A

since this is exactly what it means to even be a basis vector. They are what define the meaning of [1,0]
and [0,1] in her system.

Both systems look at the same vector in space, but assign it different coordinates. The point is, the grids
both of us use are just artificial constructs. Space does not intrinsically have a grid.

So, if we want to translate from our standard basis to Alice’s, we want to find some kind of function that
maps [32 ,− 1] in our system to [1,0] in Alice’s system, and similarly, [1,2] to [0,1]. We also note that [0,0]
is exactly the same in both coordinate systems: we both agree on where the origin is, since scaling any
vector by 0 should always give the same result, regardless of coordinate system.

Now, on the surface, this seems rather difficult. However, it might be easier to find the translation from
the Alice’s basis to our standard basis, where we’re looking to map [1,0] to [32 , − 1], and [0,1] to [1,2],
and you might already see where we’re going with this.

If we were given some vector, say [1,− 2], given in Alice’s coordinates, A, how would we go about
translating this into our standard coordinates, E? Well, the first coordinate scales Alice’s first basis
vector, and similarly to the second, and we know how to express those basis vectors in our coordinate
system, so we have,

1

[
3
2
−1

]
−2
[
1
2

]
=

[
−2
4

]
So [1,− 2]A is expressed as [−2,4]E in our standard coordinate system. But...

Doesn’t this look familiar?

Recalling from a long way back (§ 1.3.1), we’ve already done this exact same thing before! It’s matrix-
vector multiplication, with the matrix containing Alice’s basis vectors expressed in our coordinate system.

1

[
3
2
−1

]
−2
[
1
2

]
=

[
3
2 1
−1 2

] [
1
−2

]
This mapping between bases is actually a linear transformation in and of itself, and we often label its
associated matrix as P.

P =

[
3
2 1
−1 2

]
In general, this matrix is given by the basis vectors of the coordinate system being converted from,
expressed in the coordinate system being converted to (P here converts from Alice’s coordinates to ours,
so we use Alice’s basis vectors written in our language.)

This matrix, P, is called a change of basis matrix. In this case, from A to E. To convert any vector
given in F to its representation in E, we left multiply by this matrix.

Algebra I | 9

MA251 1.6 Transformations in Different Bases

Since we wanted to find the coordinates for the green vector in A, given that we know its coordinates in
E, we simply take the inverse, P−1, and left multiply by that instead.

P−1 =

[
1
2 − 1

4
1
4

3
8

]
And you can verify yourself that this matrix, multiplied with [3,2]E , gives [32 ,1]A.

From our geometric interpretation of matrix-vector multiplication from before, this is actually a very
reasonable thing to do. The matrix containing the coordinates of the new basis vectors moves our basis
vectors, ı̂ and ȷ̂ - the things we think of as [1,0] and [0,1], - over to Alice’s basis vectors - the things she
thinks of as [1,0] and [0,1].

For example, if Alice was talking about a vector, say, [1,2], then multiplying [1,2] by P transforms our
basis vectors over to Alice’s, where the process of scaling then adding basis vectors by the coordinates
[1,2] works in our favour, as we’re effectively now working with Alice’s basis vectors.

Geometrically, this matrix transforms our grid into Alice’s, but numerically, it translates a vector in
Alice’s system into our system.

P =

[
a b
c d

]
︸ ︷︷ ︸

Alice’s basis vectors
in our coordinates

P

Vector in
Alice’s coordinates︷ ︸︸ ︷[

x0
y0

]
=

[
x1
y1

]
︸︷︷ ︸

The same vector,
in our coordinates

1.6 Transformations in Different Bases
Now we can translate vectors between bases, how about transformations? If we have the 90◦ clockwise
rotation matrix,

U =

[
0 1
−1 0

]
how would Alice represent this same transformation in her own coordinate system? To be clear, we’re
trying to write down a matrix that takes Alice’s grid, and rotates it 90◦ clockwise.

The columns of the matrix encode information about where our basis vectors, ı̂ and ȷ̂ go, so just trans-
lating the columns into Alice’s coordinates is not enough. That would just give a matrix that tells her
where our basis vectors would land, written in her coordinate system.

She wants a matrix that gives where her basis vectors land, and it needs to describe those landing spots
in her coordinate system as well.

Let’s first consider what the rotation matrix does to a single specific vector, given in her coordinate
system, say, [

3
4

]
Since we don’t know the rotation matrix in her system, let’s first convert this vector into our coordinate
system. We do this by using the change of basis matrix - the matrix containing her basis vectors in our
coordinate system as columns.

The same vector,
but in our language︷ ︸︸ ︷[

1 3
2

2 −1

]
︸ ︷︷ ︸

Change of basis matrix, P

[
3
4

]

Algebra I | 10

MA251 1.6 Transformations in Different Bases

And now we have the vector in a form we can work with. I’ve left the multiplication unexpanded, but
keep in mind that the whole right hand side represents a vector - the exact same vector as before, just
described in our language.

Since we know the rotation matrix in our system, we can just multiply this whole thing by it:

Transformed vector
in our language︷ ︸︸ ︷[

0 1
−1 0

]
︸ ︷︷ ︸

Transformation matrix
in our language

[
1 3

2
2 −1

] [
3
4

]

This tells us where the vector should go, but it’s still in our language, so we convert it back into Alice’s
basis with the inverse change of basis matrix:

Transformed vector
in Alice’s language︷ ︸︸ ︷[

1 3
2

2 −1

]−1

︸ ︷︷ ︸
Inverse change of
basis matrix, P−1

[
0 1
−1 0

] [
1 3

2
2 −1

] [
3
4

]

And we’ve just figured out where some specific vector, given in Alice’s language, should go, under a
90◦ clockwise rotation. But, since the choice of vector was arbitrary, we’ve found the transformation we
wanted!

We apply the change of basis matrix to get the vector into a workable form, then the transformation
(which we know in our language), then the inverse change of basis matrix to translate back.[

1 3
2

2 −1

]−1 [
0 1
−1 0

] [
1 3

2
2 −1

]
︸ ︷︷ ︸

Transformation matrix
in Alice’s language

v

This composition of three matrices, together, gives the rotation matrix in Alice’s coordinate system. It
takes in a vector, in her language, and returns the transformed version of that vector, in her language.

We can represent all of this with the (mis)use of commutative diagrams:

VE T (VE)

VA T (VA)

R

S

P PT

where the transformation, T : V → V is acting on V , with the choice of basis indicated using subscripts.
Note that the change of basis matrix works the same before and after the transformation - it still translates
between Alice’s system and ours. The transformation of space, T (notice that this is not written in bold,
as it is a transformation not tied to a specific matrix), can be represented as the matrices, R and S,
specific to the bases E and A.

Note, since we’re only dealing with one transformation that is pretty obviously an endomorphism, and
only one vector space is being considered, in an exam, I would just draw the diagram above as:

Algebra I | 11

MA251 1.6 Transformations in Different Bases

E E′

A A′

R

S

P P

to save time. Some of the diagrams in this section will contain additional detail to aid my explanations,
but by no means do you have to include every little extraneous detail when using these diagrams yourself.

Some people define the change of basis matrix to be the opposite way as is defined here, with P being
the change of basis from E to A (so what we would call P−1), but as long as you are consistent with
your arrows, the diagram makes everything clear.

On the top diagram, we want S, which directly transforms VA to T (VA). An alternative route there, is
to take P , then R, then to go along the second P arrow, but against the direction it is pointing, which
indicates we should take an inverse of the matrix representing P . So, in terms of matrices, S = P−1RP
(reading right to left, as per function notation), matching the result from before.

Now, let’s say we have another friend, Bob, who uses yet another coordinate system, distinct from both
Alice’s and ours. How might Alice and Bob communicate? How do we find a change of basis from Bob
to Alice, and vice versa?

We can use our standard basis as an intermediary:

A B

E

R
S

P

Where R and S are the change of basis transformations from Alice’s and Bob’s systems to ours, as found
earlier. We want P here, so we travel along R, then backwards along S, so P = S−1R.

How would Bob give a transformation to Alice?

A A′

E E′

B B′

T

U

R

P

S S

R

P

Following the arrows, we have,
U = S−1RTR−1S

or,
U = P−1TP

In general, when we give a transformation between vector spaces, T : V → W , we have to be careful
when turning this transformation into a matrix. V and W , being abstract spaces, don’t intrinsically
have grids mapping them out - we have to assign basis vectors to each.

For example, let T : R2 → R2 be a 90◦ clockwise rotation. The matrix for R2
E → R2

E is just the rotation
matrix we’re familiar with, and we found the matrix for R2

A → R2
A earlier. But a matrix giving the

rotation from R2
B → R2

A is an equally valid representation of that same transformation. In the diagram
above, this matrix could be given as TR−1S, or R−1SU .

Now, for some more terminology. Going back to the first diagram,

Algebra I | 12

MA251 1.7 Eigenvectors

VE T (VE)

VA T (VA)

R

S

P PT

Because R and S represent the same transformation, T , within the same space, V , just with respect to
different bases, we call them similar matrices. In general, two n × n matrices, A and B are similar if
you can write B = P−1AP for some (usually change of basis) matrix P. Two similar matrices must be
square.

More generally, for possibly rectangular m × n matrices, we have an analogous concept of equivalence
(this equivalence is a type of equivalence relation, if you have done binary relations). Two rectangular
matrices, A and B are equivalent if you can write B = QAP for two invertible matrices P and Q (the
change of basis matrices for each of the pairs of coordinate systems for each space).

On a diagram, this would be,

VA WA′

VB WB′

QP

R

S

T

Here, V and W are vector spaces of different dimension, with subscripts indicating choice of basis. There
are 4 bases in play here, as Alice and Bob each choose their own bases for both V and W . Note that,
unlike the previous diagram, P ̸= Q, since they are change of basis matrices in different spaces. Here,
R and S both represent the same transformation of space, then they are equivalent, as you could write
R = Q−1SP. As a side note, to find P, you would do the same procedure as a few diagrams ago, and
use the standard basis as an intermediary, but the diagram was already getting cluttered enough, so this
is left as an exercise for the reader.

In general, similar matrices are equivalent, but equivalent matrices are not necessarily similar.

1.7 Eigenvectors
Consider the linear transformation given by the matrix,

A =

[
3 1
0 2

]
and how it acts on some arbitrary vector. In particular, think about the span of that vector.

A

For most vectors in the plane, they get knocked off of their span during the transformation. But some
special vectors do remain on their own span, meaning the transformation has no rotational effect on that
vector, only scaling it by some amount.

Algebra I | 13

MA251 1.7 Eigenvectors

As you might have guessed, such a vector is called an eigenvector of the transformation, and the amount
by which it is scaled is its associated eigenvalue. (The prefix, -eigen, from German, means own, so an
eigen-vector is an “own-vector”, which makes sense, given that its image is just itself, up to scaling.)

For the transformation above, ı̂ is one such vector. The span of ı̂ is just the horizontal axis, and the
image of ı̂ clearly remains on that axis after the transformation. From the matrix, we can see that ı̂
lands on [3,0], so it is scaled by a factor of 3. We say that [1,0] is an eigenvector of A, with an eigenvalue
of 3.

Furthermore, due to linearity, any vector on the horizontal axis is also similarly scaled by a factor of 3,
also remaining on their own spans.

But there are more, slightly less obvious, eigenvectors to this particular transformation:

A

This vector, [1,− 1] lands on [2,− 2], being scaled by a factor of 2, so [1,− 1] is also an eigenvector of A,
with eigenvalue 2. And again, due to linearity, any vector on that line will also be an eigenvector with
eigenvalue 2.

For this transformation, those are all the eigenvectors there are. Every other vector in the plane will get
moved off of their spans under this transformation.

But you can also have more or fewer eigenvectors - any rotation matrix,

R =

[
0 1
−1 0

]
will move every vector off of its span.

R

So this transformation has zero eigenvectors.

This shear,

S =

[
1 1
0 1

]
on the other hand, has every vector on the horizontal axis as an eigenvector, with eigenvalue 1, as they
are unchanged by the transformation.

Algebra I | 14

MA251 1.7 Eigenvectors

S

But every other vector is moved off of its span, so this transformation just has a single line of eigenvectors,
the horizontal axis, with eigenvalue 1.

Eigenvalues don’t have to be unique either - you can have multiple lines of eigenvectors with the same
eigenvalue, as given by,

T =

[
2 0
0 2

]

T

This scaling matrix just stretches every vector in the plane by a factor of 2, so every vector is an
eigenvector of this transformation, all with the same eigenvalue of 2.

By definition, the effect of a transformation, A, on an eigenvector, v, is just to scale it by some amount,
λ, the eigenvalue. We can write this definition symbolically, as,

Av = λv

The left side is matrix-vector multiplication, while the right is scalar multiplication, so we tend to do
some rearranging of this expression, by writing the right side as a matrix-vector product.

We want to scale v by a scalar, λ. The columns of the desired matrix need to scale each basis vector by
λ, so this matrix will have λ across the diagonal, and zeros everywhere else.

λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ


Factoring out the λ, this is just the identity matrix.

Av = (λI)v

And now both sides are a matrix-vector product. We can then subtract the right side, and factor out
the v,

Av − (λI)v = 0

(A− λI)v = 0

Algebra I | 15

MA251 1.7 Eigenvectors

The expression inside the bracket is just a matrix - the original transformation matrix, A, but with a λ
being subtracted from the diagonal, and would look something like,3− λ 1 4

1 5− λ 9
2 6 5− λ


We’re looking for a vector, v, such that this new matrix maps v to the zero vector.

If v = 0, then this is trivially true and isn’t particularly helpful, so we’re looking for non-zero solutions
for v - a non-zero eigenvector.

That is, we’re looking for a non-zero vector that lies in the null space of (A − λI). If the null space of
(A− λI) is non-empty, i.e., there exists an non-zero eigenvector, it follows that (A− λI) cannot be full
rank, and therefore has a zero determinant (if this doesn’t make immediate sense, reread the definitions
of null space and rank, and take a few moments to consider what it means for a transformation to have
a non-empty null space).

In other words, the only way for a non-zero vector to be mapped to the origin, is if the transformation
collapses space down into a lower dimension, corresponding to a zero determinant.

So, we’re trying to solve,
det(A− λI) = 0

for λ. This is called the characteristic equation of the matrix. The left side by itself is called the
characteristic polynomial.

For example, earlier, we had,

A =

[
3 1
0 2

]
A− λI =

[
3− λ 1
0 2− λ

]
det(A− λI) = (3− λ)(2− λ)− (1 · 0)
det(A− λI) = 0

0 = (3− λ)(2− λ)
λ = 3,2

matching the results from before. Then, to find the actual eigenvectors, multiply the modified matrix
by an arbitrary vector, and set it equal to 0.

For λ = 2, we have [
3− 2 1
0 2− 2

] [
x
y

]
=

[
0
0

]
[
1 1
0 0

] [
x
y

]
=

[
0
0

]
[
x+ y
0

]
=

[
0
0

]
x+ y = 0

y = −x

So any vector of the form, [
t
−t

]

Algebra I | 16

MA251 1.7 Eigenvectors

is an eigenvector with eigenvalue 2. We generally just pick one single eigenvector as a representative for
this entire line, so letting t = 1, we have [1,− 1], as before.

For a transformation which has multiple eigenvectors with the same eigenvalue, you’ll find that the
simultaneous equations in the final step will have multiple solutions, corresponding to the multiple
eigenvectors.

Doing the same process for the rotation matrix,

R− λI =
[
0− λ 1
−1 0− λ

]
det(R− λI) = (−λ)(−λ)− (1 · (−1))
det(R− λI) = 0

λ2 + 1 = 0

λ = ±i

we find that there are no real eigenvalues for this transformation. The eigenvalues of ±i correspond
to the fact that multiplying by i represents a 90◦ rotation in the complex plane, and the magnitude of
the eigenvalues being 1 corresponds to the fact that vectors aren’t scaled under this transformation. In
general, imaginary components of eigenvalues correspond to some kind of rotation. We can still solve for
eigenvectors, but they will have complex components.

As one very basic application of eigenvectors, if you can find an eigenvector of a 3D rotation, you’ve
found the axis of rotation - and it’s much easier to think of rotations in 3D as an angle around an axis,
rather than the entire 3× 3 rotation matrix.

This is a common theme throughout linear algebra - with any linear transformation given as a matrix, we
can interpret what it is doing by looking at its columns and seeing where the basis vectors are mapped.
But this puts a lot of emphasis on coordinate systems - another way, less dependent on coordinate
systems, is to look at the eigenvectors and eigenvalues.

Two similar matrices - two matrices representing the same linear transformations, but in different co-
ordinate systems - will have the same characteristic equation, and the same eigenvalues. Changing the
coordinate system doesn’t change the eigenvalues of a transformation - regardless of how you label space,
eigenvectors are scaled the same way.

For another, much more general application, consider what happens if our basis vectors both happen to
be eigenvectors. Let’s start in the canonical coordinate system, and say we have a linear transformation
such that,

ı̂ 7→
[
2
0

]
= 2̂ı ȷ̂ 7→

[
0
−1

]
= −1̂ȷ

So the matrix associated with that transformation would be,[
2 0
0 −1

]

Algebra I | 17

MA251 1.7 Eigenvectors

Notice how the eigenvalues of the basis vectors lie along the diagonal of the matrix, and every other
entry is zero. Any matrix with this property is called a diagonal matrix, and we’ve met one before - the
identity matrix is a diagonal matrix.

The way to interpret a diagonal matrix, is that all the basis vectors are eigenvectors, with the eigenvalues
written along the diagonals.

There are many reasons why diagonal matrices are much nicer to work with. One application is in taking
powers of matrices, or equivalently, applying a transformation to a vector many times. Since a diagonal
matrix only scales each basis vector by some eigenvalue, applying that matrix to a vector n times, just
means you scale each basis vector by the eigenvalue to the power of n.[

2 0
0 3

] [
x
y

]
=

[
2x
3y

]
[
2 0
0 3

] [
2 0
0 3

] [
x
y

]
=

[
22x
32y

]
[
2 0
0 3

]
· · ·
[
2 0
0 3

] [
2 0
0 3

]
︸ ︷︷ ︸

100

[
x
y

]
=

[
2100x
3100y

]
=

[
2100 0
0 3100

] [
x
y

]
Just looking at the transformation overall, we can write an exceedingly simple formula for the nth power
of a diagonal matrix: [

a 0
0 b

]n
=

[
an 0
0 bn

]
In contrast, try calculating the 100th power of a non-diagonal matrix. There is no simple pattern to
find.

For a few more nice properties of diagonal matrices, the determinant of a diagonal matrix is just the
product of the diagonal. This is because each entry on the diagonal tells us how much the basis vector
is scaled in that direction, so the product of all of these entries gives us how much measure is scaled
overall.

Of course, all of this is only useful when the matrix we’re working with is diagonal - when our basis
vectors just happen to both be eigenvectors.

However, if your transformation has a lot of eigenvectors, enough so we can choose a set that spans
the space the transformation is acting on, then we could use a change of basis matrix to change those
eigenvectors to be our basis.

For the matrix earlier,

A =

[
3 1
0 2

]
we found two eigenvectors,

v1 =

[
1
0

]
, and v2 =

[
1
−1

]
with eigenvalues λ1 = 3, and λ2 = 2, respectively.

We use the eigenvectors as the columns of a change of basis matrix, and change the transformation
matrix into our new basis, as before. [

1 1
0 −1

]−1 [
3 1
0 2

] [
1 1
0 −1

]

Algebra I | 18

MA251 Jordan Canonical Form

Because we’ve chosen the basis vectors to be eigenvectors, we know that resulting matrix will be a diagonal
matrix, with the corresponding eigenvalues along the diagonal, without even doing any calculations.[

3 0
0 2

]
This is because we’re now working in a basis, where the effect of this specific transformation on these
basis vectors is just to scale them by these eigenvalues.

A basis where every basis vector is an eigenvector is called an eigenbasis, and this process of changing a
matrix to an eigenbasis is called diagonalisation.

If we wanted to calculate the 100th power of A, we could change to an eigenbasis, calculate the power
there, using our simple formula, then change back.

But not every transformation admits an eigenbasis. The shear we saw earlier, for example, only has a
single line of eigenvectors, which isn’t enough to span all of 2D space.

2 Jordan Canonical Form

In this section, we will take V to be an n-dimensional vector space over a field K. We will take T : V → V
to be an linear map from V to V (an endomorphism) and A will be the matrix representing T with
respect to a fixed ordered basis E = (ei)

n
i=1.

Our goal is to find a new basis e = (ei)
n
i=1 such that the matrix of T with respecct to this new basis

is as simple as possible (or equivalently, a change of basis matrix P such that P−1AP is as simple as
possible).

One particularly simple form of a matrix is a diagonal matrix, but as mentioned above, not every
transformation admits a diagonal matrix representation.

However, if K is C (or is a field extension of C), then every matrix A is similar to a form that is almost
as good as diagonal: the Jordan canonical form or Jordan normal form.

2.1 Generalised Eigenspaces
Theorem 2.1. Let T : V → V be a linear map. Then, the matrix of T is diagonalisable if and only if
V has an eigenbasis.

Theorem 2.2. Let (λi)
r
i=1 be distinct eigenvalues of T : V → V , and let (vi)

r
i=1 be corresponding

eigenvectors – that is, T (vi) = λivi for all 1 ≤ i ≤ r. Then, (vi)
r
i=1 are linearly independent.

Theorem 2.3. Let A ∈ Kn×n be a n × n matrix over K. Then, there is some non-zero polynomial
p ∈ K[x] of degree at most n2 such that p(A) = 0n.

A polynomial is monic if the coefficient of the highest degree term is 1.

Theorem 2.4. Let A ∈ Kn×n represent the linear transformation T : V → V . Then,

• There is a unique monic non-zero polynomial p with minimal degree and coefficients in K such that
p(A) = 0n.

• If q is any polynomial with q(A) = 0n, then p divides q.

This unique polynomial is called the minimal polynomial of A, and is denoted µA.

Theorem 2.5. Similar matrices have the same minimal polynomial.

Algebra I | 19

MA251 2.2 Cayley-Hamilton Theorem

Theorem 2.6. Let D be a diagonal matrix with distinct diagonal entries (δi)
r
i=1. Then,

µD(x) =

r∏
i=1

(x− δi)

= (x− δ1)(x− δ2) · · · (x− δr)

Corollary 2.6.1. If A is diagonalisable, then µA is a product of linear factors.

2.2 Cayley-Hamilton Theorem
Recall the characteristic equation of a matrix A is defined as follows:

det(A− λI) = 0

The left side by itself is called the characteristic polynomial of A, denoted cA.

Theorem 2.7 (Cayley-Hamilton). Let A ∈ Kn×n, and let cA be the characteristic polynomial of A.
Then, cA(A) = 0n.

Corollary 2.7.1. For any A ∈ Kn×n, µA divides cA, and in particular, deg(µA) ≤ n.

2.3 Calculating Minimal Polynomials
Lemma 2.8. Let λ be any eigenvalue of A. Then, µA(λ) = 0.

Using this lemma with the Cayley-Hamilton theorem lets us reduce the possibilities for the minimal
polynomial.

Algorithm 1 Top Down Algorithm
1: Calculate the characteristic polynomial, cA.
2: Factorise the characteristic polynomial by inspection, or using the factor and remainder theorem

with polynomial division.
3: Evaluate each possible combination of factors that include all eigenvalues as roots in order of increas-

ing degree. The first to return 0n is the minimal polynomial.

As an example for the last step, if cA(x) = (x− 1)(x− 2)2(x− 3)3, then,

µA(x) ∈



(x− 1)(x− 2)(x− 3)

(x− 1)(x− 2)(x− 3)2

(x− 1)(x− 2)2(x− 3)

(x− 1)(x− 2)2(x− 3)2

(x− 1)(x− 2)(x− 3)3

(x− 1)(x− 2)2(x− 3)3

Then, evaluate the polynomials in this list at A from top to bottom (the list is sorted in degree order),
and the first one to return the zero matrix is the minimal polynomial.

Algebra I | 20

MA251 2.4 Jordan Chains

Algorithm 2 Bottom Up Algorithm

1: Pick some simple non-zero vector, v (the standard basis vector e1 is often a good choice).
2: Apply A to v repeatedly to form a chain of vectors

v0
A7→ v1

A7→ v2
A7→ · · ·

3: At some point, these image vectors will become linearly dependent, say, after d applications of A, so
there exists coefficients (αi) such that

d∑
i=0

αivi = 0

with αd = 1.
4: Then, the monic polynomial

d∑
i=0

αdx
d

divides the minimal polynomial.
5: Repeat this process with different starting vectors that do not lie in the image of previous generated

chains, until all the generated chains span V . The minimal polynomial is then the least common
multiple of these polynomials.

2.4 Jordan Chains
Recall that a non-zero vector v that satisfies (A− λIn)v = 0 is an eigenvector of A with eigenvalue λ.
We weaken this notion to classify a more general type of vector.

A non-zero vector v that satisfies (A− λIn)iv = 0 for some i > 0 is a generalised eigenvector of A with
eigenvalue λ, and, for a fixed i > 0 and fixed λ, the collection of these generalised eigenvectors,

Ni(A,λ) := {v ∈ V : (A− λIn)iv = 0}

is the nullspace of (A− λIn)i, and is called the generalised eigenspace of index i with respect to λ.

The full generalised eigenspace of A with respect to λ is defined as

0 ∪
⋃
i∈N

Ni(A,λ)

That is, it is the union of all generalised eigenspaces with respect to λ, along with the zero vector.

A Jordan chain of length k is a sequence of non-zero vectors (vi)
k
i=1 ⊂ Kn,1 such that, for some eigenvalue

λ of A,

Av1 = λv1, Avi = λvi + vi−1, 2 ≤ i ≤ k

or equivalently,

(A− λIn)v1 = 0, (A− λIn)vi = vi−1, 1 ≤ i ≤ k

thus all vectors in a Jordan chain are generalised eigenvectors with vi ∈ Ni(A,λ).

Lemma 2.9. The vectors in a Jordan chain are linearly independent.

Algebra I | 21

MA251 2.4 Jordan Chains

Theorem 2.10. The dimensions of corresponding generalised eigenspaces of similar matrices are the
same.

We define the Jordan block of degree k with eigenvalue λ to be the k × k matrix Jλ,k given by

Jλ,k = (Ji,j) =


λ if j = i

1 if j = i+ 1

0 otherwise

That is, the main diagonal has values λ, and the superdiagonal has values 1.

For example,

J2,3 =

2 1 0
0 2 1
0 0 2

 , Ji,2 =

[
i 1
0 i

]
, J−2,4 =


−2 1 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2


A matrix A of a transformation T with respect to the basis (vi)

n
i=1 ⊂ Kn is a Jordan block of degree n

if and only if (vi)
n
i=1 is a Jordan chain for A.

The minimal and characteristic polynomials of Jλ,k are given by,

µJλ,k
(x) = (x− λ)k

cJλ,k
(x) = (λ− x)k

We denote the m×n zero matrix by 0m,n. If A is an m×m matrix, and B is an n×n matrix, we define
their direct sum A⊕B to be the (m+ n)× (m+ n) matrix with block form[

A 0m,n

0n,m B

]

A Jordan basis for A is a basis of Kn consisting of one or more Jordan chains. The matrix of a
transformation with respect to a Jordan basis is the direct sum of the corresponding Jordan blocks.

Lemma 2.11. Suppose that M = A⊕B. Then, cM = cA × cB and µM = lcm(µA,µB).

Theorem 2.12. Let A be an n× n matrix over C. Then, there exists a Jordan basis for A, and hence
A is similar to a matrix J =

⊕
Jλ,k, where the Jordan blocks Jλ,k are uniquely determined by A.

The matrix J in the above is called the Jordan canonical form or Jordan normal form of A, and is
determined uniquely up to the order of the blocks. The field has to be at least C (or an extension of C)
so that A has at least one eigenvalue, since C is algebraically closed.

Theorem 2.13. Let A ∈ Cn×n, and suppose {λi}ri=1 are the eigenvalues of A. Then,

•
cA(x) = (−1)n

r∏
i=1

(x− λi)ai

where ai is the sum of the degrees of the Jordan blocks of A of eigenvalue λi;

•
µA(x) =

r∏
i=1

(x− λi)bi

where bi is the largest among the degrees of the Jordan blocks of A of eigenvalue λi;

• A is diagonalisable if and only if µA(x) has no repeated factors.

Algebra I | 22

MA251 2.5 Computing the Jordan Canonical Form

2.5 Computing the Jordan Canonical Form
Some terminology may be new or differ slightly from lecture notes, but makes the following algorithm
easier to follow.

Suppose a matrix A ∈ C10,10 has a characteristic polynomial,

cA(x) = (x− 1)3(x− 2)4(x− 3)2(x− 4)

and thus has eigenvalues λ1 = 1, λ2 = 2, λ3 = 3 and λ4 = 4.

We say that the eigenvalue 1 has algebraic multiplicity α(λ1) = 3, because it is repeated as a root of the
characteristic polynomial 3 times. The other algebraic multiplicities are then α(λ2) = 4, α(λ3) = 2, and
α(λ4) = 1. The sum of the algebraic multiplicities over all eigenvalues is equal to the dimension of the
matrix:

r∑
i=1

α(λi) = n

The geometric multiplicity γ(λi) of an eigenvalue λi is the dimension of the kernel of A − λiIn, or,
null(A− λiIn).

The generalised geometric multiplicity γk(λi) of an eigenvalue λi is the dimension of the kernel of (A−
λiIn)

k, or, null
(
(A− λiIn)k

)
.

Now, the JCF of A will have the eigenvalues along the diagonal:

J =



λ1
λ1

λ1
λ2

λ2
λ2

λ2
λ3

λ3
λ4


with each eigenvalue λi appearing α(λi) times. Note that there are many different possibilities for the
orderings of these eigenvalues, but our convention will be to group the same eigenvalues together, and
(where possible) to order these groups in increasing order. If the eigenvalues are complex, just pick any
sensible ordering.

We will call these groups Jordan boxes (not to be confused with Jordan blocks), highlighted below:

J =



λ1 λ1
λ1

 
λ2

λ2
λ2

λ2

 [
λ3

λ3

]
[
λ4
]



Algebra I | 23

MA251 2.5 Computing the Jordan Canonical Form

A Jordan box is like a Jordan block, but we don’t necessarily know where the 1s on the superdiagonal
are yet. That is, we need to fill a Jordan box with Jordan blocks, and once we have done so for all boxes,
we will have determined a Jordan canonical form for A.

To begin with, the geometric multiplicity tells us how many blocks are in each box. For instance,[
λ3

λ3

]
−→

[
[λ3]

[λ3]

]
︸ ︷︷ ︸

γ(λ3)=2

or
[[
λ3 1

λ3

]]
︸ ︷︷ ︸

γ(λ3)=1

Here, we can have either two 1× 1 blocks, if the geometric multiplicity of λ3 is 2, or a single 2× 2 block,
if γ(λ3) = 1.

For 3× 3,λ1 λ1
λ1

 −→

[λ1] [λ1]
[λ1]


︸ ︷︷ ︸

γ(λ1)=3

or

[λ1 1
λ1

]
λ1


︸ ︷︷ ︸

γ(λ1)=2

or

λ1 1
λ1 1

λ1


︸ ︷︷ ︸

γ(λ1)=1

the Jordan box can contain three 1 × 1 Jordan blocks, one 2 × 2 Jordan block and one 1 × 1 Jordan
block, or a single 3× 3 Jordan block, if the geometric multiplicity is 3, 2, or 1, respectively.

However, for 4 × 4 boxes or larger, the geometric multiplicity alone is not sufficient to determine the
blocks within the box. For instance,

λ
λ

λ
λ

 −→


λ 1

λ 1
λ


[λ]

 or


[
λ 1

λ

]
[
λ 1

λ

]


︸ ︷︷ ︸
γ(λ1)=2

are both consistent with a geometric multiplicity of 2. So, we have to calculate generalised geometric
multiplicities to gain more information.

The generalised geometric multiplicities of index k tell us how many chains exist in each generalised
eigenspace of index k, allowing us to determine the lengths of the Jordan chains. For instance, suppose
α(λ) = 7, so we have a 7 × 7 Jordan box. If γ1(λ) = 4, γ2(λ) = 6, γ3(λ) = 7 = α(λ), then the chains
would be:

i = 3 •
↓

i = 2 • •
↓ ↓

i = 1 • • • • }γ1(λ)

}
γ2(λ)

 γ3(λ)

and the lengths of the chains indicate the dimensions of the Jordan blocks within the Jordan box for λ.
We have one chain of length 3, one chain of length 2, and two chains of length 1, so we have,

λ λ
λ

 [
λ

λ

]
[λ]

[λ]



Algebra I | 24

MA251 2.5 Computing the Jordan Canonical Form

in this Jordan box (the ordering of the blocks within the box is arbitrary). We repeat this process for
every Jordan box of dimensions 4 or higher.

To find the transformation matrix P such that A = P−1JP, we calculate actual vectors for these chains
(usually by calculating the generalised eigenbases), then augment them together in the same order as we
arranged the boxes and blocks in J.

Algorithm 3 JCF Decomposition

1: Calculate the eigenvalues of A ∈ Cn×n, (λi)ki=1.
2: For each eigenvalue λi, determine,

• the algebraic multiplicity α(λi) = number of times repeated as a root in cA;
• the geometric multiplicity γ(λi) = null(A− λiIn).

3: If, for an eigenvalue λi, we have α(λi) ≥ 4, additionally calculate γk(λi) = null
(
(A − λiIn)k

)
for

k = 2,3, . . . as until γk(λi) = α(λi).
4: Use these generalised geometric multiplicities to determine the lengths of the chains, and hence the

size of the Jordan blocks in each Jordan box. Repeat for each eigenvalue.
5: To further find the transformation matrix P, calculate the bases of ker

(
(A− λiIn)k

)
for each eigen-

value λi, where the basis for each generalised eigenspace is a subset of the basis for the next generalised
eigenspace.

6: Calculate the Jordan chains for each λi by picking vectors vj ∈ ker
(
(A−λiIn)k

)
\ker

(
(A−λiIn)k−1

)
,

and recursively computing vj−1 = (A−λiIn)vj until the chain is complete, starting with the longest
chain. Then, compute the next chain, ensuring that the vectors picked at every step is linearly
independent with those already selected in previous chains to ensure the chains do not converge.

7: Augment the Jordan chains together in order corresponding to boxes and blocks to form P.
8: Note: this procedure yields the right transformation matrix. That is, we obtain P such that A =

P−1JP and not A = PJP−1.

Example. Determine a JCF for the matrix,

A =


5 −2 1 −7 1 5
0 3 4 −4 −1 1
1 −1 1 −1 1 2
1 −1 −2 2 1 2
0 0 1 −1 2 0
0 0 −1 1 0 3


You may use that cA(x) = (x− 2)2(x− 3)4 without proof.

From the characteristic polynomial, we have eigenvalues λ1 = 2, and λ2 = 3, with α(λ1) = 2, and
α(λ2) = 4, so we have the Jordan box form,

J =



[
λ1

λ1

]

λ2

λ2
λ2

λ2




Next, we calculate the geometric multiplicity γ(λ1) (using MA106 techniques – see §7.2.6.2 here):

γ(λ1) = dimker(A− λ1I6)

Algebra I | 25

https://drive.google.com/file/d/1BD8KvjNtC1rLTcWGz8aPsEyzPuGKRpP-

MA251 2.5 Computing the Jordan Canonical Form

= dimker


3 −2 1 −7 1 5
0 1 4 −4 −1 1
1 −1 −1 −1 1 2
1 −1 −2 0 1 2
0 0 1 −1 0 0
0 0 −1 1 0 1



row
reduce−→ dimker


1 0 0 −2 0 0
0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


There are 5 pivot columns, so dimker(A− λ1I6) = 6− 5 = 1 = γ(λ1). This is sufficient information to
determine a 2 × 2 Jordan box, so we may stop here, but we will continue to compute the generalised
geometric multiplicity γ2(λ1), as it will be helpful later for computing the transformation matrix.

γ2(λ1) = dimker
(
(A− λ1I6)2

)

= dimker


3 −2 1 −7 1 5
0 1 4 −4 −1 1
1 −1 −1 −1 1 2
1 −1 −2 0 1 2
0 0 1 −1 0 0
0 0 −1 1 0 1



2

= dimker


3 −2 4 10 −1 6
0 1 6 −6 −1 2
1 −1 −1 −1 0 2
1 −1 −2 0 0 2
0 0 1 −1 0 0
0 0 −2 2 0 1



row
reduce−→ dimker


1 0 0 −2 −1 0
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


Important: when calculating (A − λ1I6)2, do not square the row reduced form we found earlier. You
must use the original non-reduced matrix.

There are 4 pivot columns, so γ2(λ1) = 6− 4 = 2, and we have reached the algebraic multiplicity α(λ1),
so we may stop here.

Next, we similarly calculate the geometric multiplicity γ(λ2):

γ(λ2) = dimker(A− λ2I6)

= dimker


2 −2 1 −7 1 5
0 0 4 −4 −1 1
1 −1 −2 −1 1 2
1 −1 −2 −1 1 2
0 0 1 −1 −1 0
0 0 −1 1 0 0



Algebra I | 26

MA251 2.5 Computing the Jordan Canonical Form

row
reduce−→ dimker


1 −1 0 −3 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


There are 4 pivot columns, so dimker(A−λ2I6) = 6− 4 = 2 = γ(λ2). This is insufficient information to
determine the Jordan box of λ2, so we calculate higher index generalised geometric multiplicities:

γ2(λ2) = dimker
(
(A− λ2I6)2

)

= dimker


2 −2 1 −7 1 5
0 0 4 −4 −1 1
1 −1 −2 −1 1 2
1 −1 −2 −1 1 2
0 0 1 −1 −1 0
0 0 −1 1 0 0



2

= dimker


−2 2 2 4 −3 −4
0 0 −2 2 1 0
−1 1 2 1 −2 −2
−1 1 2 1 −2 −2
0 0 −1 1 1 0
0 0 0 0 0 0



row
reduce−→ dimker


1 −1 0 −3 0 2
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Again, ensure you use the original matrix, and not the row reduced matrix we found before.

There are 3 pivot columns, so γ2(λ2) = 6− 3 = 3. We still have not reached the algebraic multiplicity of
λ2, so we continue to the next generalised eigenspace:

γ3(λ2) = dimker
(
(A− λ2I6)3

)

= dimker


2 −2 1 −7 1 5
0 0 4 −4 −1 1
1 −1 −2 −1 1 2
1 −1 −2 −1 1 2
0 0 1 −1 −1 0
0 0 −1 1 0 0



3

= dimker


2 −2 −5 −1 5 4
0 0 1 −1 −1 0
1 −1 −3 0 3 2
1 −1 −3 0 3 2
0 0 1 −1 −1 0
0 0 0 0 0 0



Algebra I | 27

MA251 2.5 Computing the Jordan Canonical Form

row
reduce−→ dimker


1 −1 0 −3 0 2
0 0 1 −1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


There are 2 pivot columns, so γ2(λ2) = 6− 2 = 4 and we have reached the algebraic multiplicity of λ2,
so we stop here.

At this point, we will draw our Jordan chains for λ2 to keep track of our results:

i = 3 w3

↓
i = 2 w2

↓
i = 1 w1 u1

This indicates that we have one 3× 3 Jordan block and one 1× 1 Jordan block within the 4× 4 Jordan
box for λ2.

For λ1, the Jordan chains would be:
i = 2 v2

↓
i = 1 v1

as γ1(λ1) = 1 and γ2(λ1) = 2. (Doing this is unnecessary as γ1(λ1) alone is sufficient to determine a
2× 2 Jordan box, but this generalised procedure will work for boxes of any size.)

Thus, the blocks are:

J =



[[
λ1 1

λ1

]]

[λ2] λ2 1

λ2 1
λ2




 =


2 1 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3


Next, we will compute the transformation matrix. To calculate the Jordan chains, we will begin by finding
bases for each of the generalised eigenspaces we have found so far (again, using MA106 techniques).

For λ1, we have,

(A− λ1I6)v = 0
row

reduce−→


1 0 0 −2 0 0
0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = 2d

c = d
a
b
c
d
e
f

 = d


2
0
1
1
0
0

 −→ ker(A− λ1I6) = span




2
0
1
1
0
0




Algebra I | 28

MA251 2.5 Computing the Jordan Canonical Form

(
(A− λ1I6)2

)
v = 0

row
reduce−→


1 0 0 −2 −1 0
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = 2d+ e

b = e

c = d
a
b
c
d
e
f

 = d


2
0
1
1
0
0

+ e


1
1
0
0
1
0

 −→ ker(A− λ1I6) = span




2
0
1
1
0
0

,

1
1
0
0
1
0




For λ2, we have,

(A− λ2I6)v = 0
row

reduce−→


1 −1 0 −3 0 0
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = b+ 3d

c = d
a
b
c
d
e
f

 = b


1
1
0
0
0
0

+ d


3
0
1
1
0
0

 −→ ker(A− λ2I6) = span




1
1
0
0
0
0

,

3
0
1
1
0
0





(
(A− λ2I6)2

)
v = 0

row
reduce−→


1 −1 0 −3 0 2
0 0 1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = b+ 3d− 2f

c = d
a
b
c
d
e
f

 = b


1
1
0
0
0
0

+ d


3
0
1
1
0
0

+ f


−2
0
0
0
0
1

 −→ ker
(
(A− λ2I6)2

)
= span




1
1
0
0
0
0

,

3
0
1
1
0
0

,

−2
0
0
0
0
1





Algebra I | 29

MA251 2.5 Computing the Jordan Canonical Form

(
(A− λ2I6)3

)
v = 0

row
reduce−→


1 −1 0 −3 0 2
0 0 1 −1 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




a
b
c
d
e
f

 =


0
0
0
0
0
0


a = b+ 3d− 2f

c = d+ e
a
b
c
d
e
f

 = b


1
1
0
0
0
0

+ d


3
0
1
1
0
0

+ f


−2
0
0
0
0
1

+ e


0
0
1
0
1
0

 −→ ker
(
(A− λ2I6)3

)
= span




1
1
0
0
0
0

,

3
0
1
1
0
0

,

−2
0
0
0
0
1

,

0
0
1
0
1
0




I have coloured the basis vectors according to which index they first appeared in, as this will be helpful
for our next step.

Recall the Jordan chains we have found:

λ1 λ2
i = 3 w3

↓
i = 2 v2 w2

↓ ↓
i = 1 v1 w1 u1

We begin by choose a vector to be v2. From the diagram above, it lies in the generalised eigenspace of
index 2 for λ1, but not of 1. We have one obvious option,

v2 =


1
1
0
0
1
0


We then compute v1:

v1 = (A− λ1In)v2

=


2
0
1
1
0
0


completing the chain, and the eigenvalue.

Moving on to λ2, we select the largest chain, so we have to choose w3 ∈ ker
(
(A − λ2In)3

)
\ ker

(
(A −

Algebra I | 30

MA251 2.5 Computing the Jordan Canonical Form

λ2In)
2
)
. Again, we have an obvious option,

w3 =


0
0
1
0
1
0


Then we compute w2 and w1:

w2 = (A− λ2In)w3

=


2
3
−1
−1
0
−1


w1 = (A− λ2In)w2

=


−1
−1
0
0
0
0


completing the chain. We begin the next chain, and need to choose u1 ∈ span(ker(A − λ2I6) \ {w1}).
There is again only one remaining basis vector for our choice:

u1 =


3
0
1
1
0
0


Now, recall our choice of ordering of the boxes and blocks in J:

J =



[[
λ1 1

λ1

]]

[λ2] λ2 1

λ2 1
λ2





We have the single λ1 block, followed by the 1 × 1 then 3 × 3 λ2 blocks. The corresponding chains are
the v chain, u chain, and w chain. Augmenting these vectors together in ascending order within each
chain gives the required transformation matrix:

P = [

λ1 box︷ ︸︸ ︷
v1|v2︸ ︷︷ ︸
2×2

|
λ2 box︷ ︸︸ ︷

u1︸︷︷︸
1×1

|w1|w2|w3︸ ︷︷ ︸
3×3

Jordan blocks

]

Algebra I | 31

MA251 2.6 Review

=


2 1 3 −1 2 0
0 1 0 −1 3 0
1 0 1 0 −1 1
1 0 1 0 −1 0
0 1 0 0 0 1
0 0 0 0 −1 0


2.6 Review

Theorem 2.14. Let A ∈ Cn×n be a square matrix with complex entries, and let p ∈ C[x] be any
polynomial. Then if λ is an eigenvalue of A, then p(λ) is an eigenvalue of p(A), and any eivenvalue of
p(A) is of this form.

Theorem 2.15. For A ∈ Cn×n, define

Ni(A,λ) := ker
(
(A− λn)i

)
Suppose A,B ∈ Cn×n are similar. That is, there exists an invertible matrix S ∈ Cn×n such that
B = S−1AS. Then, A and B share the same set of eigenvalues,

λ1 = µ1, . . . ,λk = µk

and moreover,

dimNi(A,λj) = dimNi(B,µj) for all i,j

Or, using our earlier notation,

γi(λj) = γ(µj) for all i,j

The converse of this result also holds. That is, if A,B ∈ Cn×n share the same eigenvalues and satisfy
the equations above, then A and B are similar.

3 Matrix Functions

3.1 Matrix Powers
Suppose we wish to compute An for a general matrix A and large exponent n≫ 1.

Ideally, A is diagonalisable, and we may compute,

An = (P−1DP)n

= (P−1DP)(P−1DP) · · · (P−1DP)

= P−1D(PP−1)D(P · · ·P−1)DP

= P−1DnP

and powers of diagonal matrices are trivial to compute:

Dn =


λ1

λ2
. . .

λk


n

=


λn1

λn2
. . .

λnk


But, as we have already seen, not every matrix admits an eigenbasis. On the other hand, every matrix
does have a Jordan canonical form, and by a similar telescoping sum, we have,

An = P−1JnP

The problem is now to efficiently compute powers of a matrix in Jordan canonical form.

Algebra I | 32

MA251 3.2 Lagrange Interpolation

Theorem 3.1. For any square matrices A,B,

(A⊕B)n = An ⊕Bn

and more generally, for any collection of square matrices (Ai)
k
i=1(

k⊕
i=1

Ai

)n

=

k⊕
i=1

An
i

Recall that J is the direct sum of Jordan blocks, so if these blocks are sufficiently small or simple, this
can simplify the calculation greatly. We also have a general formula for larger Jordan blocks:

Theorem 3.2. For any Jordan block Jλ,k,

Jn
λ,k =



(
n
0

)
λn

(
n
1

)
λn−1 · · ·

(
n

k−2

)
λn−k+2

(
n

k−1

)
λn−k+1

0
(
n
0

)
λn · · ·

(
n

k−3

)
λn−k+3

(
n

k−2

)
λn−k+2

...
...

. . .
...

...

0 0 · · ·
(
n
0

)
λn

(
n
1

)
λn−1

0 0 · · · 0
(
n
0

)
λn


noting that

(
n
k

)
= 0 wherever k > n.

3.2 Lagrange Interpolation
Another way to compute arbitrary powers of matrices is to use Lagrange interpolation.

Theorem 3.3 (Lagrange Interpolation). Suppose ψ(A) = 0n for a polynomial ψ ∈ C[x], and furthermore
suppose ψ has roots (αi)

k
i=1 with corresponding (algebraic) multiplicities (mi)

k
i=1. (In practice, we would

choose ψ = cA or ψ = µA.)

Then, for any sufficiently well-behaved∗ function f : C→ C, there exists a function q such that

f = qψ + r

where r is a polynomial of degree strictly lower than ψ and

f (t)(αi) = r(t)(αi)

for all 1 ≤ j ≤ k, 0 ≤ t < mj, and furthermore, f(A) = r(A).

The idea is that we compute a polynomial, r, that acts effectively like a Taylor polynomial near the roots
of ψ.

Example. Find a general formula for f(A) = An, where

A =


3 1 0 1
−1 5 4 1
0 0 2 0
0 0 0 4


You may use that µA(x) = (2− x)(4− x)2 without proof.

∗f must be analytic in a neighbourhood around every (αi)
k
i=1.

Algebra I | 33

MA251 3.3 Matrix Exponentials

Here, f(z) = zn, which is certainly a well-behaved function with easily computable derivatives so we
may attempt Lagrange interpolation.

µA is a cubic, so we may choose r(z) = αz2 + βz + γ.

We know that f and µA agree at the roots of µA, so we compute,

f(2) = 2n = r(2) = 4α+ 2β + γ

f(4) = 4n = r(4) = 16α+ 4β + γ

f ′(4) = n4n−1 = r′(4) = 8α+ β

Then,

r(A) = αA2 + βA+ γI4

= α


8 8 4 8
−8 24 28 8
0 0 4 0
0 0 0 16

+ β


3 1 0 1
−1 5 4 1
0 0 2 0
0 0 0 4

+ γ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


8α+ 3β + γ 8α+ β 4α 8α+ β
−8α− β 24α+ 5β + γ 28α+ 4β 8α+ β

0 0 4α+ 2β + γ 0
0 0 0 16α+ 4β + γ



=


4n − n4n−1 n4n−1 2n − 4n + 2n4n−1 n4n−1

−n4n−1 4n + n4n−1 4n − 2n + 2n4n−1 n4n−1

0 0 2n 0
0 0 0 4n


Note that we did not have to calculate the individual values of α, β and γ, (which are

α = 1
4 · 2

n − 1
4 · 4

n + 1
2n4

n−1

β = −2 · 2n − 2 · 4n + 5n4n−1

γ = 4 · 2n + 5 · 4n − 12n4n−1

for those interested) as the entries in r(A) are simple linear combinations of the values of r(2), r(4), and
r′(4). For instance, in the first entry, we have,

8α+ 3β + γ = (16α+ 4β + γ)− (8α+ β)

= r(4)− r′(4)
= 4n − n4n−1

with every other entry being computed similarly.

We’ve only been using Lagrange interpolation to calculate powers of matrices here, but the technique
works identically for any sufficiently well-behaved function f : C→ C.

3.3 Matrix Exponentials

3.3.1 Recurrence Relations

Consider a vector-valued first-order recurrence relation,

xn = Axn−1

Algebra I | 34

MA251 3.3 Matrix Exponentials

where (xi)
∞
i=1 ⊂ Km is a sequence of vectors. We will only be considering autonomous recurrence

relations – that is, the matrix A is not a function of n. If a value for x0 is given, then these equations
are also called (discrete) initial value problems.

These recurrence relations can be solved analogously to the scalar-valued case with back substitution:

xn = Axn−1

= A2xn−2

= A3xn−3

...

= Anx0

However, in this case, we now have to calculate an arbitrary power of a matrix, but we can use techniques
from the last section to do so.

One application of this is in solving higher-order scalar-valued autonomous recurrence relations. For
example, consider the Fibonacci sequence, given by the second-order recurrence relation,

Fn = Fn−1 + Fn−2

We can easily rewrite this as, [
Fn

Fn+1

]
=

[
0 1
1 1

] [
Fn−1

Fn

]
vn =

[
0 1
1 1

]
vn−1

and now we have a single first-order vector-valued recurrence relation, and this works more generally –
we can transform an nth-order recurrence relation into a first-order vector-valued recurrence relation in
n dimensions.

3.3.2 Differential Equations

Now, suppose we have a system of first-order linear autonomous simultaneous differential equations, say,

x′ = 7x− 2y + 9z

y′ = 7x+ 3y − 5z

z′ = 2x+ 5y + 6z

We can alternatively interpret these separate variables as a single vector:x′y′
z′

 =

7x− 2y + 9z
7x+ 3y − 5z
2x+ 5y + 6z


and, factoring out the matrix, we can represent this system as a single first-order vector-valued differential
equation:

v′ = Av

where,

v =

xy
z

 , and A =

7 −2 9
7 3 −5
2 5 6


Algebra I | 35

MA251 3.3 Matrix Exponentials

Compare this to the case of an ordinary first-order differential equation,

x′ = ax

where a is some constant. The solution to this differential equation is given by,

x(t) = eatx(0)

Similarly, the vector-valued differential equation,

v′ = Av

has a solution given by

v(t) = eAtv(0)

But, what does eAt mean? Clearly,

e

[
3 1 4
1 5 9
2 6 5

]
= e× e× · · · × e︸ ︷︷ ︸[

3 1 4
1 5 9
2 6 5

]
times?

is meaningless.

Instead, recall the Taylor series of f(x) = ex for real inputs x ∈ R:

ex =

∞∑
n=0

xn

n!

Unlike the expression on the left, it does make sense for us to input things other than real numbers into
the series on the right, even if those objects do not immediately make sense as exponents. For instance,
we could input complex numbers, or even matrices to this expression.

While the equation above is a theorem for real numbers, it’s a definition for more exotic inputs, like
complex numbers or matrices,

ex :=

∞∑
n=0

xn

n!
, x ∈ C,Kn×n, . . .

and we sometimes prefer using the notation exp(x) instead of ex to emphasise this point more. There
are some issues of convergence – after all, why should we expect this series to converge for matrix inputs
just because it converges for real inputs – but that is a relatively easy exercise in analysis.

We can use similar techniques from calculating matrix powers before. In particular, exp is entire, so
Lagrange interpolation also applies, and is, in general (for non-diagonalisable matrices), simpler than
using a JCF decomposition.

Example. Solve the system of differential equations,

x′ = x− 3z

y′ = x− y − 6z

z′ = −x+ 2y + 5z

with initial conditions,

x(0) = 1

y(0) = 1

z(0) = 0

Algebra I | 36

MA251 Bilinear Maps

First, we write the system as a vector-valued differential equation:xy
z

′

=

 1 0 −3
1 −1 −6
−1 2 5


︸ ︷︷ ︸

A

xy
z



Then, we find the characteristic polynomial:

cA(z) = det(A− zI3)
= −z3 + 5z2 − 8z + 4

= (1− z)(2− z)2

so we have roots λ1 = 1, and λ2 = 2, with multiplicities α(λ1) = 1 and α(λ2) = 2.

We interpolate f(z) = ezt with r(z) = αz2 + βz + γ:

f(1) = et = r(1) = α+ β + γ

f(2) = e2t = r(2) = 4α+ 2β + γ

f ′(2) = te2t = r′(2) = 4α+ β


α = (t− 1)e2t + et

β = (4− 3t)e2t − 4et

γ = (2t− 3)e2t + 4et

r(A) = αA2 + βA+ γI3

= α

 4 −6 −18
6 −11 −27
−4 8 16

+ β

 1 0 −3
1 −1 −6
−1 2 5

+ γ

1 0 0
0 1 0
0 0 1


=

4α+ β + γ −6α −18α− 3β
6α+ β −11α− β − γ −27α− 6β
−4α− β 8α+ 2β 16α+ 5β + γ


=

(3t− 3)e2t + 4et (6− 6t)e2t − 6et (6− 9t)e2t − 6et

(3t− 2)e2t + 2et (4− 6t)e2t − 3et (3− 9t)e2t − 3et

−te2t 2te2t (3t+ 1)e2t


and so, x(t)y(t)

z(t)

 = eAt

11
0


=

(3− 3t)e2t − 2et

(2− 3t)e2t − et
te2t



4 Bilinear Maps

Let V and W be vector spaces over a field K. A bilinear map on V and W is a map τ : V ×W → K
such that for all v,v1,v2 ∈ V , w,w1,w2 ∈W , and α,β ∈ K,

1. τ(αv1 + βv2,w) = ατ(v1,w) + βτ(v1,w);

2. τ(v,αw1 + βw2) = ατ(v,w1) + βτ(v,w2).

That is, for a fixed v, τ(v,w) is linear in w, and for a fixed w, τ(v,w) is linear in v.

Algebra I | 37

MA251 Bilinear Maps

So, if we fix bases of V and W , a bilinear map is completely determined by its actions on the basis
vectors. Let (ei)

n
i=1 and (fi)

m
i=1 be bases of V and W , respectively. Then, the n×m matrix A = (αi,j)

defined by αi,j = τ(ei,fj) is said to be the matrix of τ with respect to the bases (ei)
n
i=1 and (fi)

m
i=1.

Then, for any vectors,

v =

n∑
i=1

aiei, w =

m∑
i=1

bifi

we have by bilinearity,

τ(v,w) = τ

 n∑
i=1

aiei,

m∑
j=1

bjfj


=

n∑
i=1

aiτ

ei,

m∑
j=1

bjfj


=

n∑
i=1

m∑
j=1

aiτ(ei,fj)bj

=

n∑
i=1

m∑
j=1

aiαi,jbj

= v⊤Aw

So, for any fixed bases of V and W , every bilinear map on V and W corresponds to a unique n × m
matrix, and conversely, every n×m matrix determines a bilinear map.

Example. Write down the matrix corresponding to the bilinear map τ defined by

τ(v,w) := v1w1 − v1w2 + 2v2w1

First, expand out the formula above with a general matrix:

τ(v,w) =

[
v1
v2

]⊤ [
a b
c d

] [
w1

w2

]
=
[
v1 v2

] [aw1 + bw2

cw1 + dw2

]
= av1w1 + bv1w2 + cv2w1 + dv2w2

Equating coefficients, we have,

a = 1

b = −1
c = 2

d = 0

A =

[
1 −1
2 0

]

Algebra I | 38

MA251 4.1 Bilinear Forms

4.1 Bilinear Forms
Theorem 4.1. Let A be the matrix of the bilinear map τ : V ×W → K with respect to the bases (ei)

n
i=1

and (fi)
m
i=1 of V and W , and let B be its matrix with respect to the bases (e′i)

n
i=1 and (f ′i)

m
i=1 of V and

W . Let P and Q be the change of basis matrices. Then,

B = P⊤AQ

Now, we consider the case where W = V . Then, a bilinear map τ : V × V → K is called a bilinear form
on V .

The previous theorem then becomes,

Theorem 4.2. Let A be the matrix of the bilinear form τ on V with respect to the basis (ei)
n
i=1 of V ,

and let B be its matrix with respect to the basis (e′i)
n
i=1, and let P be the change of basis matrix. Then,

B = P⊤AP

If A and B satisfy this relation, they are said to be congruent matrices.

Note that congruence is distinct from similarity in that, if τ is a bilinear form on V and T is a linear
operator on V , it might be the case that τ and T have the same matrix in some specific basis of V , but
they do not necessarily have the same matrix in any other basis of V .

The rank of a bilinear form τ is the rank of its matrix A.

A vector v ∈ Kn is zero if and only if v⊤w = 0 for all vectors w ∈ Kn. Since,

τ(v,w) = v⊤Aw

the kernel of A is equal to,

span{v ∈ V : τ(w,v) = 0 ∀w ∈ V }

which is also called the right radical of τ , and the kernel of A⊤ is equal to,

span{v ∈ V : τ(v,w) = 0 ∀w ∈ V }

which is also called the left radical of τ .

Since A and A⊤ have the same rank, the left and right radicals both have dimension n − r where r is
the rank of τ . In particular, the rank of τ is n if and only if the left and right radicals have dimension 0,
and we say that τ is nondegenerate. That is, τ is nondegenerate if and only if its matrix (in any basis)
is nonsingular.

A bilinear form τ on V is symmetric if τ(w,v) = τ(v,w) for all v,w ∈ V . τ is antisymmetric or
alternating if τ(v,v) = 0 for all v ∈ V .

The antisymmetry condition implies that for all v,w ∈ V ,

τ(v +w,v +w) = τ(v,w) + τ(w,v) = 0

and hence,

τ(v,w) = −τ(w,v)

If 2 ̸= 0 in K, then the converse of this result holds: that is, τ(v,w) = −τ(w,v) for all v ∈ V implies
that τ(v,v) = 0 for all v ∈ V .

An n×n matrix A is symmetric if A⊤ = A, and antisymmetric if A⊤ = −A and A has zeros along the
diagonal.

Algebra I | 39

MA251 4.2 Quadratic Forms

Theorem 4.3. The bilinear form τ is symmetric (resp. antisymmetric) if and only if its matrix (with
respect to any basis) is symmetric (resp. antisymmetric).

One example of a symmetric bilinear form is when V = Rn and τ is defined by,

τ(v,w) =

n∑
i=1

viwi

= ⟨v,w⟩
= v ·w

also called the dot product or scalar product. This bilinear form has matrix form equal to the identity
matrix In with respect to the standard basis of Rn.

Theorem 4.4. Suppose that 2 ̸= 0 in K. Then, any bilinear form τ can be written uniquely as τ1 + τ2,
where τ1 is symmetric and τ2 is antisymmetric.

Proof. For existence, take τ1(v,w) = 1
2

(
τ(v,w) + τ(w,v)

)
and τ2(v,w) = 1

2

(
τ(v,w)− τ(w,v)

)
.

For uniqueness, suppose τ also decomposes into τ ′1+ τ ′2, with τ ′1 symmetric and τ ′2 antisymmetric. Then,
by symmetry and antisymmetry,

τ1(v,w) =
1

2

(
τ ′1(v,w) + τ ′1(w,v) + τ ′2(v,w) + τ ′2(w,v)

)
=

1

2

(
τ ′1(v,w) + τ ′1(v,w) + τ ′2(v,w)− τ ′2(v,w)

)
=

1

2

(
τ ′1(v,w) + τ ′1(v,w)

)
= τ ′1(v,w)

so τ1 = τ ′1, and hence,

τ2 = τ − τ1
= τ − τ ′1
= τ2

so the decomposition is unique.

Note that 1
2 has to exist in K for the first chain of equations to be meaningful, so we require that 2 ̸= 0

in K. ■

4.2 Quadratic Forms
Let V be a vector space over a field K. A quadratic form on V is a function q : V → K such that

q(λv) = λ2q(v)

for all v ∈ V and λ ∈ K, and the function τq : V × V → K defined by,

τq(v,w) := q(v +w)− q(v)− q(w)

is a symmetric bilinear form on V .

Given a symmetric bilinear form τ , we can also define a quadratic form by,

qτ (v) := τ(v,v)

Algebra I | 40

MA251 4.3 Bases for Quadratic Forms

These processes are almost inverse to each other, in that, given a quadratic form q and a bilinear form
τ , we have,

qτq = 2q, τqτ = 2τ

so, if 2 ̸= 0 in K, there is a bijection between quadratic forms and symmetric bilinear forms given by,

q 7→ 1

2
τq, τ 7→ qτ

If 2 = 0 in K, then this correspondence does not hold, and indeed there exist quadratic forms that
are not of the form τ(−,−) for any symmetric bilinear form τ on V . In general, the standard forms of
quadratic and bilinear forms on vector spaces where 2 = 0 in the underlying field is quite different from
the case where 2 ̸= 0.

From this point onwards, we will assume that 2 = 1 + 1 ̸= 0 in the field K.

4.3 Bases for Quadratic Forms
Let (ei)ni=1 be a basis of V , and let A = (αi,j) be the matrix of a symmetric bilinear form τ with respect
to this basis. A is then also said to be the matrix of the quadratic form q := qτ with respect to this
basis.

Note that A is symmetric, as τ is symmetric. Then,

q(v) = v⊤Av

just like in the case for bilinear maps, so we can easily write out the matrix

Example. Write down the matrix corresponding to the quadratic form q defined by

q
(
[x,y,z]

)
:= 8x2 − 7y2 + 8z2 + 8xy − 2xz + 8yz

As we did for bilinear forms, we again expand q(v) = v⊤Av for a general matrix A and vector v, then
compare coefficients:

[
x y z

] a d e
d b f
e f c

xy
z

 = ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz

= 8x2 − 7y2 + 8z2 + 8xy − 2xz + 8yz

A =

 8 4 −1
4 −7 4
−1 4 8


Theorem 4.5. Let V be a vector space of dimension n equipped with a symmetric bilinear form τ (or
equivalently, with a quadratic form q).

Then, there exist a basis (bi)
n
i=1 of V and constants (βi)

n
i=1 such that,

τ(bi,bj) =

{
βi i = j

0 i ̸= j

Equivalently,

• Give any quadratic form q on V , there exist a basis (bi)
n
i=1 of V and constants (βi)

n
i=1 such that,

q

(
n∑

i=1

xibi

)
=

n∑
i=1

βix
2
i

Algebra I | 41

MA251 4.3 Bases for Quadratic Forms

• Any symmetric matrix A is congruent to a diagonal matrix. That is, there exists an invertible
matrix P such that A = P⊤DP, where D is a diagonal matrix.

We give an algorithm to find the matrix P.

Algorithm 4 Orthogonal Diagonalisation
1: Determine the eigenvalues of A.
2: For each eigenvalue λi, find the corresponding eigenspace, ker(A− λiIn) = span

(
(vj)

k
j=1

)
.

3: Write out a normal diagonalisation of A = PDP−1, recalling that D is the matrix with the eigen-
values of A along the diagonal, and P is the matrix with the corresponding eigenvectors as columns.

4: Check if the columns of P are orthogonal by checking if their scalar product is zero or not. If all
columns are orthogonal, we are done.

5: Otherwise, apply the Gram-Schmidt process (§ 4.4) to the columns of P .

Theorem 4.6. For a symmetric real matrix, eigenvectors with distinct eigenvalues are always orthogonal.

This allows us a slight shortcut in the algorithm above: we only need to check the scalar product of
eigenvectors that share the same eigenvalue.

Theorem 4.7. A quadratic form q over C has the form

q(v) =

r∑
i=1

x2i

with respect to a suitable basis, where r = rank(q).

Equivalently, given a symmetric matrix A ∈ Cn×n, there is an invertible matrix P ∈ Cn×n such that
P⊤AP = B, where B = (βi,j) is a diagonal matrix with,

βi,i =

{
1 i ∈ [1,r]

0 i ∈ (r,n]

where r = rank(A).

In particular, up to a change of basis, a quadratic form on Cn is uniquely determined by its rank, and
we say that the rank is the only invariant of a quadratic form over C.

Theorem 4.8 (Sylvester’s Theorem). A quadratic form q over R has the form

q(v) =

t∑
i=1

x2i −
u∑

i=1

x2t+i

with respect to a suitable basis, where t+ u = rank(q).

Equivalently, given a symmetric matrix A ∈ Rn×n, there is an invertible matrix P ∈ Rn×n such that
A = PBP⊤, where B = (βi,j) is a diagonal matrix with,

βi,i =


1 i ∈ [1,t]

−1 i ∈ (t,t+ u]

0 i ∈ (t+ u,n]

where t+ u = rank(A).

The numbers t and u of positive and negative terms are invariants of q, and the pair of integers (t,u) is
the signature of q.

Algebra I | 42

MA251 4.4 The Gram-Schmidt Process

Theorem 4.9 (Sylvester’s Law of Inertia). Suppose that q is a quadratic form on the vector space V
over R, and that (ei)ni=1 and (e′i)

n
i=1 are two bases of V such that,

q

(
n∑

i=1

xiei

)
=

t∑
i=1

x2i −
u∑

i=1

x2t+i

and

q

(
n∑

i=1

xie
′
i

)
=

t′∑
i=1

x2i −
u′∑
i=1

x2t′+i

Then, t = t′ and u = u′.

4.4 The Gram-Schmidt Process
In this section, we will take K = R.

Let V be a vector space over K of dimension n, and let q be a quadratic form on V , with associated
symmetric bilinear form τ .

The quadratic form q is positive definite if q(v) > 0 for all non-zero v ∈ V . τ is also called positive
definite if q is positive definite.

A quadratic form q is positive definite if and only if t = n and u = 0 in Sylvester’s theorem. That is, if
q has signature (n,0).

A vector space V over R equipped with a positive definite symmetric bilinear form τ is called a Euclidean
space. In this case, Sylvester’s theorem just states that there is a basis (ei)ni=1 of V with respect to which
the matrix of q is the identity matrix In.

In other words, the basis vectors are all unit vectors, and they are all orthogonal to each other. Such a
basis is called an orthonormal basis, and more generally, any set of vectors such that the vectors are all
unit length and orthogonal to each other is called orthonormal.

If V is a Euclidean space with an orthonormal basis, then any positive definite symmetric bilinear form
τ is equivalent to the dot product, and we will write v ·w for τ(v,w).

Given a (finite) set of linearly independent vectors S = (vi)
k
i=1, the Gram-Schmidt process generates an

orthogonal set S′ = (ui)
k
i=1 that spans the same k-dimensional subspace of V as S.

Algebra I | 43

MA251 4.4 The Gram-Schmidt Process

Algorithm 5 Gram-Schmidt Process
1: Define the projection operator by,

proju(v) :=
v · u
u · u

u

And if u = 0, then we define proju(v) = 0. This operator projects v orthogonally onto the line
spanned by u.

2: Recursively calculate the sequence of orthogonal vectors (ui)
n
i=1 using,

u1 = v1

u2 = v2 − proju1
(v2)

u3 = v3 − proju1
(v3)− proju2

(v3)

u4 = v4 − proju1
(v4)− proju2

(v4)− proju3
(v4)

...

un = vn −
n−1∑
i=1

projui
(vn)

3: Normalise each vector to obtain the orthonormal sequence (ei)
n
i=1:

ei =
ui

∥ui∥

The calculation of the orthogonal sequence (ui)
n
i=1 is more specifically called Gram-Schmidt orthog-

onalisation, while the total calculation of the orthonormal sequence (ei)
n
i=1 is called Gram-Schmidt

orthonormalisation as the vectors are normalised.

Geometrically, to compute the next vector uk, we project vk onto the subspace U = span
(
(ui)

k−1
i=1

)
spanned by the previous orthogonal vectors, which by construction, is the same as the subspace spanned
by the first k − 1 original vectors, span

(
(vi)

k−1
i=1

)
. The vector uk is then defined to be the difference

between vk and this projection, guaranteed to be orthogonal to all the vectors in U . Because of this
projection action, the vectors (ui)

n
i=1 are sometimes also denoted (v⊥

i)
n
i=1.

Example. In the last example, we found that the matrix corresponding to the quadratic form q defined
by

q
(
[x,y,z]

)
:= 8x2 − 7y2 + 8z2 + 8xy − 2xz + 8yz

is given by

A =

 8 4 −1
4 −7 4
−1 4 8


Now, find an orthonormal basis of V such that the matrix of q is diagonal. You may use that cA(x) =
−(x− 9)2(x+ 9) without proof.

We first find an ordinary diagonalisation of A. From the characteristic equation, A has eigenvalues
λ1 = 9 and λ2 = −9, so,

(A− λ1I3)v = 0
row

reduce−→

1 −4 1
0 0 0
0 0 0

ab
c

 =

00
0


Algebra I | 44

MA251 4.4 The Gram-Schmidt Process

a = 4b− cab
c

 = b

41
0

+ c

−10
1

 −→ ker(A− λ1I3) = span

41
0

,
−10

1



(A− λ2I3)v = 0
row

reduce−→

1 0 −1
0 1 4
0 0 0

ab
c

 =

00
0


a = c

b = −4cab
c

 = c

 1
−4
1

 −→ ker(A− λ2I3) = span

 1
−4
1


So, A = PDP−1 with

D =

9 0 0
0 9 0
0 0 −9


P =

−1 4 1
0 1 −4
1 0 1


−10

1

 ·
41
0

 = 4

̸= 0

so the first two columns of P are not orthogonal. The last column must be orthogonal to the first two
by Theorem 4.6

v1 = p1

v2 = p2 −
p2 · v1

v1 · v1
v1

= p2 −
−4
2

v1

=

21
2



P =

−1 2 1
0 1 −4
1 2 1


Normalising:

P =

−
1√
2

2
3

1
3
√
2

0 1
3 − 4

3
√
2

1√
2

2
3

1
3
√
2


Algebra I | 45

MA251 4.5 Orthogonal Transformations

So an orthonormal basis of V with q diagonal is given by,

− 1√

2

0
1√
2

 ,


2
3

1
3

1
3

 ,


1
3
√
2

− 4
3
√
2

1
3
√
2




4.5 Orthogonal Transformations
In a Euclidean space V , the scalar product gives us a notion of length of a vector and angles between
vectors, so we might be interested in what kind of transformations preserve these quantities.

A linear map T : V → V is orthogonal if it preserves the scalar product on V . That is, T (v)·T (w) = v ·w
for all v,w ∈ V .

A n× n matrix A is orthogonal if A⊤A = AA⊤ = In, or equivalently, A⊤ = A−1.

Lemma 4.10. A linear map T : V → V is orthogonal if and only if its matrix A is orthogonal.

Theorem 4.11. det(A) = ±1 for any orthogonal matrix A.

Proof.

det(A)2 = det(A) det(A⊤)

= det(A⊤A)

= det(In)

= 1

so det(A) =
√
1 = ±1. ■

Theorem 4.12. A linear map T : V → V is orthogonal if and only if
(
T (ei)

)n
i=1

is an orthonormal
basis of V .

Theorem 4.13 (QR Decomposition). Any invertible matrix A ∈ Rn×n can be written as A = QR
where Q is orthogonal and R is upper-triangular.

Algebra I | 46

MA251 4.5 Orthogonal Transformations

Algorithm 6 QR Decomposition

1: Perform the Gram-Schmidt process on the columns of A = [a1|a2| . . . |an] to obtain the orthonor-
malised set (ei)

n
i=1.

2: Express the columns of A in the orthonormal basis:

a1 = ⟨e1,a1⟩e1
a2 = ⟨e1,a2⟩e1 + ⟨e2,a2⟩e2
a3 = ⟨e1,a3⟩e1 + ⟨e2,a3⟩e2 + ⟨e3,a3⟩e3
a4 = ⟨e1,a4⟩e1 + ⟨e2,a4⟩e2 + ⟨e3,a4⟩e3 + ⟨e4,a4⟩e4

...

ak =

k∑
i=1

⟨ei,ak⟩ei

noting that ⟨ei,ai⟩ = ∥v⊥
i ∥ (which you had to calculate before during the normalisation step).

3: the above set of equations can be packaged into matrix form,

A = QR

where,

Q = [e1|e2| . . . |en]

R =



∥v⊥
1 ∥ ⟨e1,a2⟩ ⟨e1,a3⟩ ⟨e1,a4⟩ · · · ⟨e1,an⟩
0 ∥v⊥

2 ∥ ⟨e2,a3⟩ ⟨e2,a4⟩ · · · ⟨e2,an⟩
0 0 ∥v⊥

3 ∥ ⟨e3,a4⟩ · · · ⟨e3,an⟩
0 0 0 ∥v⊥

4 ∥ · · · ⟨e4,an⟩
...

...
...

...
. . .

...
0 0 0 0 · · · ∥v⊥

n ∥



Example. Find a QR decomposition of,

B =

2 1 −1
1 0 2
2 −1 3


We perform the Gram-Schmidt process on the columns of B = [b1|b2|b3].

e1 =
b1

∥b1∥

=
1

3

21
2


=

 2
3
1
3
2
3


b⊥
2 = b2 − ⟨b2,e1⟩e1
= b2 − 0e1

Algebra I | 47

MA251 4.6 Orthonormal Bases for Bilinear Forms

=

 1
0
−1


e2 =

b⊥
2

∥b⊥
2 ∥

=
1√
2

 1
0
−1


=

 1√
2

0
− 1√

2


b⊥
3 = b3 − ⟨b3,e1⟩e1 − ⟨b3,e2⟩e2
= b3 − 2q1 − (−2

√
2)e2

=

− 1
3

4
3
− 1

3


e3 =

b⊥
3

∥b⊥
3 ∥

=
1√
2

− 1
3

4
3
− 1

3


=

−
√
2
6

2
√
2

3

−
√
2
6


Q = [e1|e2|e3]

=


2
3

1√
2
−

√
2
6

1
3 0 2

√
2

3
2
3 − 1√

2
−

√
2
6


R =

3 0 2

0
√
2 −2

√
2

0 0
√
2



B =


2
3

1√
2
−

√
2
6

1
3 0 2

√
2

3
2
3 − 1√

2
−

√
2
6


3 0 2

0
√
2 −2

√
2

0 0
√
2



4.6 Orthonormal Bases for Bilinear Forms
Suppose we have a Euclidean space V , and a linear operator T : V → V or a quadratic form q on V
(not necessarily the same quadratic form as the one providing the Euclidean structure). Is it always
possible to find an orthonormal basis of V such that the matrix of q has a simple form? Notice that we
are now handling two different matrices simultaneously: we’re trying to optimise the matrix of q, while
still keeping the matrix of the original quadratic form as the identity.

It turns out that this is also a question about linear operators: given any bilinear form τ on V , we have

τ(v,w) = v⊤Aw

Algebra I | 48

MA251 4.6 Orthonormal Bases for Bilinear Forms

and we can interpret matrix-vector multiplication as a linear map, so,

= v · T (w)

So, every bilinear form τ on V uniquely determines a linear operator T on V such that,

τ(v,w) = v · T (w)

where T is the linear operator corresponding to the matrix A of τ with entries Ai,j = τ(ei,ej) for the
standard basis (ei)

n
i=1 of V . Conversely, any linear operator T similarly determines a bilinear form τ ,

where bilinearity follows from the bilinearity of the scalar product and linearity of T .

So, once we have a fixed bilinear form providing the Euclidean structure (i.e., the scalar product), any
other bilinear form τ on V can be obtained from applying a linear transformation to one of the arguments
of the scalar product, so there is a bijection between bilinear forms and linear operators.

In particular, if T is any linear operator, then (v,w) 7→ (Tv) · w is certainly a bilinear form, so there
exists a unique linear operator S such that,

(Tv) ·w = v · (Sw)

for all v,w ∈ V . Such a linear operator S is called the adjoint of T , and is alternatively denoted T ∗.

If we have chosen an orthonormal basis, then the matrix of T ∗ is the transpose of the matrix of T . It
follows that a linear operator is orthogonal if and only if T ∗ = T−1.

A linear operator T is selfadjoint if T ∗ = T , or equivalently, if the bilinear form τ(v,w) = v · (Tw) is
symmetric.

So, if V is a Euclidean space of dimension n, then the following problems are all equivalent:

• Given a quadratic form q on V , find an orthonormal basis of V that makes the matrix of q as
simple as possible;

• Given a selfadjoint linear operator T on V , find an orthonormal basis of V that makes the matrix
of T as simple as possible;

• Given an n × n symmetric real matrix A, find an orthogonal matrix P such that P⊤AP is as
simple as possible.

Lemma 4.14. Let A be a n×n symmetric real matrix. Then, A has an eigenvalue in R, and moreover,
all complex eigenvalues of A lie in R.

Theorem 4.15 (Spectral Theorem). Let V be a Euclidean space of dimension n. Then,

• Given any quadratic form q on V , there is an orthonormal basis (fi)
n
i=1 of V and constants (αi)

n
i=1

uniquely determined up to reordering, such that,

q

(
n∑

i=1

xifi

)
=

n∑
k=1

αi(xi)
2

for all x1, . . . ,xn ∈ R.

• Given any selfadjoint linear operator T : V → V , there is an orthonormal basis (fi)
n
i=1 of V

consisting of eigenvectors of T .

• Given any n × n symmetric real matrix A, there is an orthogonal matrix P such that P⊤AP =
P−1AP is a diagonal matrix.

Example. TO DO

Algebra I | 49

MA251 4.7 Reduction of Second Degree Polynomial Equations

4.7 Reduction of Second Degree Polynomial Equations
The general equation of a second degree polynomial in n variables (xi)

n
i=1 is given by,

n∑
i=1

αi,ix
2
i +

n∑
i=1

i−1∑
j=1

αi,jxixj +

n∑
i=1

βixi + γ = 0

for an n × n lower triangular matrix A = (αi,j) of constants and n-dimensional vector b = (βi) of
constants. That is, there is a term for every variable squared, a term for every product of a pair of
variables, a term for every variable alone, and a constant term. For any set of fixed coefficients, this
equation describes a quadric (hyper)surface in n-dimensional Euclidean space.

For example, for the n = 3 case, the general polynomial is given by,

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0

We can simplify these equation by applying various isometries to the coordinate basis. By the spectral
theorem, we can apply orthogonal basis changes to eliminate the quadratic terms in mixed variables (the
terms with coefficients D, E, and F in the example above). We do this by completing the square in the

n∑
i=1

αi,ix
2
i +

n∑
i=1

i−1∑
j=1

αi,jxixj

term to see what coordinate changes we should effect. For instance, suppose we have the equation,

x2 + xy + y2 + x = 0

We complete the square on x2 + xy + y2 to obtain,(
x+

1

2
y

)2

+
3

4
y2 + x = 0

Now, we apply the linear transformation, [
x
y

]
7→
[
x+ 1

2y
y

]
giving,

x2 +
3

4
y2 + x− 1

2
y = 0

and we no longer have any mixed quadratic terms.

Now, whenever αi,i ̸= 0, we can perform the translation isometry,

xi 7→ xi −
βi

2αi,i

thus eliminating the term βixi.

From example above, we would have,

[
x
y

]
7→

x− 1
2·1

y − − 1
2

2· 34

 =

[
x− 1

2
y + 1

3

]

Algebra I | 50

MA251 4.7 Reduction of Second Degree Polynomial Equations

giving, (
x− 1

2

)2

+
3

4

(
y +

1

3

)2

+

(
x− 1

2

)
− 1

2

(
y +

1

3

)
= 0(

x2 − x+
1

4

)
+

3

4

(
y2 +

2

3
y +

1

9

)
+

(
x− 1

2

)
−
(
1

2
y +

1

6

)
= 0

x2 − x+
1

4
+

3

4
y2 +

1

2
y +

1

12
+ x− 1

2
− 1

2
y − 1

6
= 0

x2 +
3

4
y2 =

1

3

and we can now see that the original equation x2 + xy+ y2 + x = 0 describes an ellipse, a fact that may
not be obvious from the original expression.

However, if αi,i = 0 for some i, then we cannot eliminate the term βixi. That is, we can only eliminate
linear terms if there is a corresponding quadratic term. Instead, we permute the coordinates such that
αi,i ̸= 0 for 1 ≤ i ≤ r and βi ̸= 0 for r < i ≤ r + s.

If s > 1, then we don’t change xi for 1 ≤ i ≤ r, but replace
∑s

i=1 βr+ixr+1 by βxr+1. To show that this
transformation is orthogonal, suppose our orthonormal basis is (ei)

n
i=1. Then, we can extend,

e1, . . . ,er,
1√∑s

i=1 β
2
r+i

s∑
i=1

βr+ier+i

to an orthonormal basis of our Euclidean space using the Gram-Schmidt process. Note that the (r+1)th
vector of the basis is chosen such that our equation will have just the term

(√∑s
i=1 β

2
r+i

)
xr+1, so the

equation has at most one non-zero βi; either there are no linear terms at all, or there is just βr+1.

Finally, if there is a linear term, then βr+1 ̸= 0, and, by dividing through by a constant, we can force
βr+1 = −1, then perform the translation,

xr+1 7→ xr+1 −
γ

βr+1

to eliminate the constant γ. If there is no linear term, then we again divide the equation through by a
constant to force γ = 0 or γ = −1, and move it to the right side in the latter case.

We have proved:

Theorem 4.16. Any second degree polynomial equation can be transformed through isometries of Eu-
clidean space into an equation with one of the following forms:

•
r∑

i=1

αix
2
i = 0

•
r∑

i=1

αix
2
i = 1

•
r∑

i=1

αix
2
i − xr+1 = 0

where 0 ≤ r ≤ n and (αi)
r
i=1 are non-zero constants, and in the third case, r < n.

The sets of solutions defined by the first two cases are called central quadrics, as they have central
symmetry; that is, if a vector v satisfies the equation, then so does −v.

Algebra I | 51

MA251 4.8 Singular Value Decomposition

4.8 Singular Value Decomposition
In this section, we will study linear maps T : V → W between Euclidean spaces V and W . Again, we
wish to find bases of V and W such that the matrix of T is as simple as possible.

From row and column operations, we know it is always possible to choose bases of V and W such that
the matrix of T has Smith normal form, [

Ir 0
0 0

]
where r is the rank of T . However, while simple, this form isn’t very useful as it does not respect the
Euclidean structure of V and W . The problem now is to choose orthonormal bases of V and W such
that the matrix of T has a simple form.

Theorem 4.17 (Singular Value Decomposition for Linear Maps). Suppose T : V → W is a linear map
of rank r between Euclidean spaces V and W . Then, there exist unique positive numbers γ1 ≥ γ2 ≥ · · · ≥
γr > 0 called the singular values of T , and orthonormal bases of V and W such that the matrix of T
with respect to these bases is

Σ =

[
D 0
0 0

]
where D = diag(γ1, . . . ,γr).

Corollary 4.17.1 (Singular Value Decomposition for Matrices). Given any real m×n matrix A of rank
r ≤ min{m,n}, there exist unique singular values γ1 ≥ γ2 ≥ . . . ≥ γr > 0 and (non-unique) orthogonal
matrices P and Q such that,

Σ =

[
D 0
0 0

]
= P⊤AQ

Equivalently, we say that the SVD of A is,

A = PΣQ⊤

Theorem 4.18. The matrices A and A⊤ share the same singular values.

Proof.

A = PΣQ⊤

A⊤ = (PΣQ⊤)⊤

= Q⊤Σ⊤P

■

We present two algorithms for computing the singular value decomposition of a real m× n matrix A.

Algorithm 7 Singular Value Decomposition

1: Compute the matrices AA⊤ and A⊤A.
2: The eigenvectors of A⊤A form the columns of the n× n orthogonal matrix Q, and the eigenvectors

of AA⊤ form the columns of the m×m orthogonal matrix P.
3: Perform the Gram-Schmidt process on the columns of Q and P if necessary.
4: The square roots of the eigenvalues of either matrix form the singular values.

Algebra I | 52

MA251 4.8 Singular Value Decomposition

This requires finding eigenvectors for a pair of matrices, namely, AA⊤ and A⊤A. But, because A =
PΣQ, once we have one of P or Q, it is possible to compute the other by multiplying the columns of
the matrix we have by A.

Algorithm 8 Singular Value Decomposition Shortcut
1: Let A be an m× n matrix.
2: Compute whichever of AA⊤ and A⊤A has higher dimensions (if A is a “tall” matrix, compute the

former; if A is a “wide” matrix, compute the latter).
3: Order the (orthonormalised) eigenvectors (qi)

n
i=1 of this matrix such that the corresponding eigen-

vectors are in decreasing order, λ1 ≥ λ2 ≥ · · · ≥ λr > 0, and λi = 0 for i > r, where r is the rank of
A.

4: The square roots of the eigenvalues form the singular values.
5: The n× n orthogonal matrix Q is given by

Q = [q1|q2| . . . |qn]

6: Define the sequence of vectors (pi)
r
i=1 by multiplying the corresponding qi by A, then normalising:

pi =
1

∥Aqi∥
Aqi

for 1 ≤ i ≤ r. Then, (pi)
r
i=1 is an orthonormal set. Using Gram-Schmidt or otherwise, extend this

set to an orthonormal basis (pi)
m
i=1 of Rm.

7: The m×m orthogonal matrix P is given by

P = [p1|p2| . . . |pm]

Example. Find a SVD decomposition of,

A =

[
1 0 1
−1 1 0

]

We compute the eigenvectors of AA⊤:

A⊤A =

 2 −1 1
−1 2 0
1 0 1


cA⊤A(x) = (x− 3)(x− 1)x

so we have eigenvalues (in descending order) λ1 = 3, λ2 = 1, and λ3 = 0, giving singular values
γ1 =

√
λ1 =

√
3 and γ2 =

√
λ2 = 1.

Σ =

[√
3 0 0
0 1 0

]
Next, we find the eigenvectors:

(A⊤A− λ1I3)v = 0
row

reduce−→

1 0 −2
0 1 1
0 0 0

ab
c

 =

00
0


a = 2c

b = −c

Algebra I | 53

MA251 4.8 Singular Value Decomposition

ab
c

 = c

 2
−1
1

 −→ ker(A− λ2I3) = span


 2
−1
1


︸ ︷︷ ︸

v1



(A⊤A− λ2I3)v = 0
row

reduce−→

1 0 0
0 1 −1
0 0 0

ab
c

 =

00
0


b = −c

ab
c

 = c

 0
−1
1

 −→ ker(A− λ2I3) = span


 0
−1
1


︸ ︷︷ ︸

v2



(A⊤A− λ3I3)v = 0
row

reduce−→

1 0 1
0 1 1
0 0 0

ab
c

 =

00
0


a = −c
b = −c

ab
c

 = c

−1−1
1

 −→ ker(A− λ2I3) = span


−1−1

1


︸ ︷︷ ︸

v3


Normalise the eigenvectors,

q1 =
1√
6
v1, q2 =

1√
2
v2, q3 =

1√
3
v3

These eigenvectors have distinct eigenvalues, so they are orthogonal by Theorem 4.6, and we do not have
to perform the Gram-Schmidt process. So, we have,

Q = [q1|q2|q3]

=


2√
6

0 − 1√
3

− 1√
6

1√
2
− 1√

3
1√
6

1√
2

1√
3


To find P, the first algorithm just repeats all of these calculations again on AA⊤. For the second
algorithm, we calculate,

Aq1 =

√
6

2

[
1
−1

]
, Aq2 =

√
2

2

[
1
1

]
, Aq3 =

[
0
0

]
Ignore the zero vector and normalise Aq1 and Aq2:

p1 =
1√
2

[
1
−1

]
, p2 =

1√
2

[
1
1

]

Algebra I | 54

MA251 Sesqulinear Forms

Here, p1 and p2 already form a basis of R2, so we skip the Gram-Schmidt process, and we have,

P = [p1|p2]

=

[
1√
2

1√
2

− 1√
2

1√
2

]

So the SVD of A is given by

A = PΣQ⊤

=

[
1√
2

1√
2

− 1√
2

1√
2

] [√
3 0 0
0 1 0

]
2√
6
− 1√

6
1√
6

0 1√
2

1√
2

− 1√
3
− 1√

3
1√
3



5 Sesqulinear Forms

Not examinable.

6 Operators on Hilbert Spaces

Not examinable.

7 Finitely Generated Abelian Groups

So far, we have considered vector spaces over fields. In this section, we will consider a generalisation of a
vector space called a module in which this field of scalars is replaced by a ring. Modules also generalise
the notion of abelian groups, since the abelian groups are exactly the modules over the ring of integers.

7.1 Review
We quickly review some basic group theory. The definitions and theorems here will be stated in terms
of abelian groups, but most will hold for general groups.

A group, (G,∗) is a set, G, equipped with a binary operation, ∗, that obeys the following axioms:

• ∀a,b ∈ G, a ∗ b ∈ G (closure);

• ∀a,b,c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity);

• ∃e ∈ G such that a ∗ e = e ∗ a = a ∀a ∈ G (existence of identity);

• ∀a ∈ G,∃(a−1) ∈ G such that a ∗ (a−1) = (a−1) ∗ a = e (existence of inverses).

Furthermore, if the operation is also commutative, the group is abelian. The identity, e, is also written
as idG or 0G, the latter being used mainly for abelian groups.

For abelian groups, it is common to use additive notation where the binary operation is written as +,
and we will continue with this notation from this point onwards.

A group G is cyclic if there exists an element x ∈ G such that every element of G is of the form nx for
some n ∈ Z.

Let (G,+) and (H,∗) be groups. A function ϕ : G→ H is a group homomorphism bettween G and H if

ϕ(a+ b) = ϕ(a) ∗ ϕ(b)

Algebra I | 55

MA251 7.1 Review

for all a,b ∈ G. Note that this necessarily requires that,

ϕ(idG) = idH

and

ϕ(−a) = −ϕ(a)

An injective homomorphism is called a monomorphism and a surjective homomorphism is called a epi-
morphism. If a homomorphism ϕ has an inverse, or equivalently, if ϕ is bijective, then ϕ is furthermore
a group isomorphism and we write G ∼= H if such an isomorphism exists.

Theorem 7.1. Every cyclic group is isomorphic to either (Z,+) or to Zn = Z/nZ for some n > 0.

The order of an element g ∈ G, denoted |g|, is the smallest natural n such that ng = idG. If ng ̸= idG
for all n ∈ N, then we say that g has infinite order.

Theorem 7.2. If ϕ : G→ H if an isomorphism, then |g| = |ϕ(g)| for all g ∈ G.

A group G is generated or spanned by a subset X ⊆ G if every g ∈ G can be written as a finite sum,

|X|∑
i=1

mixi

with mi ∈ Z and xi ∈ X, and we write G = ⟨X⟩, or ⟨x1, . . . xn⟩ if X has finite cardinality. In this latter
case, we say that G is finitely generated.

In multiplicative notation, G = ⟨X⟩ if and only if

|X|∏
i=1

xmi
i

so every element can be “factored” into elements of X.

A group is cyclic if and only if X is a singleton set.

The direct sum of a set of abelian groups
(
Gi

)n
i=1

is defined to be the set,{
(gi)

n
i=1 : gi ∈ Gi

}
with component-wise addition

(gi)
n
i=1 + (hi)

n
i=1 = (gi + hi)

n
i=1

This forms a group with identity (idGi)
n
i=1 and −(gi)ni=1 = (−gi)ni=1.

For non-abelian groups, this is more commonly called the direct product of groups.

A subset H ⊆ G of a group (G,+) is a subgroup of G if (H,+) is also a group, and we write H ≤ G to
denote this relation. The group itself, G, and the trivial group {idG} are always subgroups of G. Any
subgroup H not equal to G is a proper subgroup, and we write H < G to denote this relation. Any
subgroup not equal to {idG} is a non-trivial subgroup.

Lemma 7.3. If H ≤ G, then idH = idG.

Theorem 7.4. Let H ⊆ G. Then, the following statements are equivalent:

(i) H ≤ G;

(ii) (a) H ̸= ∅;

Algebra I | 56

MA251 7.1 Review

(b) a,b ∈ H → a+ b ∈ H;

(c) a ∈ H → −a ∈ H.

(iii) (a) H ̸= ∅;

(b) a,b ∈ H → a− b ∈ H.

(ii) and (iii) are the two step and one step subgroup tests (so called because H is often assumed to be
non-empty, and hence doesn’t count as a step).

Let G be a group, H ≤ G and g ∈ G. The set g +H = {g + h : h ∈ H} is a left coset of H in G, and
H + g = {h + g : h ∈ H} is a right coset of H in G. For abelian groups, left and right cosets coincide,
and we just say coset alone.

Theorem 7.5. The following statements are equivalent for any x,g ∈ G:

• x ∈ H + g;

• H + g = H + x;

• x− g ∈ H.

Corollary 7.5.1. Two cosets H + a and H + b are either equal or disjoint.

Corollary 7.5.2. The cosets of H in G partition G.

Theorem 7.6. If H is finite, then all cosets of H in G have |H| elements.

The number of distinct left (or right) cosets of H in G is called the index of H in G, and is written as
[G : H]

Theorem 7.7 (Lagrange’s Theorem). If H ≤ G, then,

|G| = [G : H]|H|

Corollary 7.7.1. If H ≤ G, then the order of H divides the order of G.

Corollary 7.7.2. For any g ∈ G, |g| divides |G|.

Theorem 7.8. Let G be a group of prime order p. Then, G is cyclic and G ∼= Zp.

If A and B are subsets of a group G, then we define their sum by,

A+B := {a+ b : a ∈ A,b ∈ B}

Lemma 7.9. If H is a subgroup of an abelian group G, and H + a, H + b are cosets of H in G, then,

(H + g) + (H + k) = H + (g + k)

Theorem 7.10. Let H be a subgroup of an abelian group G. Then, the set G/H of cosets H + g of H
in G forms a group under addition of sets as defined above.

Such a group is called a quotient group or factor group of G by H. Note that if G is finite, then
|G/H| = [G : H] = |G|/|H|.

Let ϕ : G → H be a group homomorphism. Then, the kernel ker(ϕ) of ϕ is defined to be the set of
elements of G mapped to the identity idH . That is,

ker(ϕ) = {g ∈ G : ϕ(g) = idH}

Note that ker(ϕ) always contains idH as group homomorphisms must map identities to identities. If idH
is the only element of ker(ϕ), then the kernel is trivial.

Algebra I | 57

MA251 7.2 Free Abelian Groups

The image of ϕ is then defined as,

im(ϕ) = {ϕ(g) : g ∈ G}

Theorem 7.11. Let ϕ : G→ H be a group homomorphsim. Then, ϕ is a monomorphism (injection) if
and only if the kernel ker(ϕ) is trivial.

Proof. Since idG ∈ ker(ϕ), if ϕ is injective, then we must have ker(ϕ) = {idG}, completing the forward
implication.

Conversely, suppose ker(ϕ) = {idG}, and let a,b ∈ G with ϕ(a) = ϕ(b). Then, ϕ(a− b) = ϕ(a)− ϕ(b) =
idH , so a− b ∈ ker(ϕ). But then, a− b = idG, and hence a = b, so ϕ is injective, completing the reverse
implication. ■

Theorem 7.12. Let ϕ : G→ H be a group homomorphism. Then, ker(ϕ) is a subgroup of G, and im(ϕ)
is a subgroup of H.

Furthermore, if K is a subgroup of G, then the map ϕ : G → G/K defined by ϕ(g) = K + g is an
epimorphism (surjection) with kernel K.

Proof. The first statement follows from the two step subgroup test. For the second, it is clear that ϕ is
surjective, and ϕ(g) = idG/K ↔ K + g = K + idG ↔ g ∈ K, so ker(ϕ) = K. ■

Theorem 7.13 (First Isomorphism Theorem). Let ϕ : G → H be a group homomorphism with kernel
K. Then, G/K ∼= im(ϕ). More precisely, there is an isomorphism ϕ̄ : G/K → im(ϕ) defined by
ϕ̄(K + g) = ϕ(g) for g ∈ G.

7.2 Free Abelian Groups
The direct sum Zn := Z⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸

n

of n copies of Z is called a (finitely generated) free abelian group
of rank n.

More generally, a finitely generated abelian group is free abelian if it is isomorphic to Zn for some n ≥ 0,
with the free abelian group Z0 of rank 0 defined to be the trivial group.

The free abelian groups have many properties in common with vector spaces like Rn, but we would
expect some differences, as Z is not a field. Similarly to vector spaces, we will write elements of Zn as
column vectors.

We then define the standard basis of Zn exactly as for the vector space Rn; that is, a set of vectors (xi)
n
i=1

such that xi is 0 everywhere apart from the ith component, which has a 1. This basis has the same
properties as a basis of a vector space: the vectors are linearly independent, and they span (generate)
Zn, for a modified definition of linear independence and span.

Elements (xi)
n
i=1 of an abelian group G are called linearly independent if the equation

n∑
i=1

αixi = idG

with integer coefficients αi ∈ Z holds only if αi = 0 for all 1 ≤ i ≤ n.

Elements S = {xi}ni=1 of an abelian group G form a free basis or integral basis of G if and only if they
are linearly independent and span (generate) G. That is,

G = ⟨(xi)ni=1⟩

Algebra I | 58

MA251 7.2 Free Abelian Groups

or equivalently, every g ∈ G can be written as a unique linear integer combination of elements in S:

g =

n∑
i=1

αixi

where all the αi ∈ Z.

Note that a set of elements in Zn that form a basis of Qn or Rn need not be a free basis of Zn. For
instance, the set, {[

2
0

]
,

[
0
2

]}
is a basis of Q2 and R2, and are linearly independent in Z2, but not of Z2, as we are only allowed integer
coefficients in Zn: there is no way to write, say,[

1
0

]
= α1

[
2
0

]
+ α2

[
0
2

]
with α1 and α2 as integers. This also shows that a set of n linearly independent elements of Zn does not
necessarily form a free basis.

Theorem 7.14. For any set of elements (gi)
n
i=1 of an abelian group G, it is possible to extend the

assignment xi 7→ gi to a group homomorphism ϕ : Zn → G. We define

ϕ


α1

α2

...
αn

 :=

n∑
i=1

αigi

Then,

• ϕ is a group homomorphism;

• The set (gi) is linearly independent if and only if ϕ is an monomorphism (injection);

• The set (gi) span G if and only if ϕ is an epimorphism (surjection);

• The set (gi) form a free basis of G if and only if ϕ is a isomorphism.

Theorem 7.15 (Universal Property of the Free Abelian Group). Let G be a free abelian group with a
free basis (gi)

n
i=1. Let H be an abelian group, and (hi)

n
i=1 be elements of H. Then, there exists a unique

group homomorphism ϕ : G→ H such that ϕ(gi) = hi.

As for finite dimensional vector spaces, we have yet to prove that any two free bases of a free abelian
group have the same size. Let (xi)

n
i=1 be the standard free basis of Zn, and let (yi)

m
i=1 be another free

basis of Zn (expressed in terms of the standard basis). As in linear algebra, we define the associated
change of basis matrix P with respect to the original basis (xi) and target basis (yi) by,

P = [y1|y2| . . . |ym]

That is, if x and y are column vectors expressed in terms of the standard basis (xi)
n
i=1 and free basis

(yi)
n
i=1, respectively, then,

x = Py

Theorem 7.16. Let (yi)
m
i=1 ⊂ Zn. Then, the following statements are equivalent:

• (yi)
n
i=1 is a free basis of Zn;

Algebra I | 59

MA251 7.3 Unimodular Smith Normal Form

• n = m and the change of basis matrix P ∈ Zn×n has an inverse P−1 ∈ Zn×n (that is, the inverse
of P has integer entries);

• n = m and det(P) = ±1.

A square matrix with integer entries and determinant ±1 is called unimodular.

For example, if n = 1, and we have elements,

y1 =

[
2
7

]
, y2 =

[
1
4

]
then we have

P =

[
2 1
7 4

]
with det(P) = 2 · 4− 1 · 7 = 1, so {y1,y2} is a free basis of Z2.

In contrast, take our previous example of

y1 =

[
2
0

]
, y2 =

[
0
2

]
Then, det(P) = 4 ̸= ±1, so this set is not a free basis of Z2.

7.3 Unimodular Smith Normal Form
Recall that, in linear algebra, we may use elementary row and column operations to reduce an m × n
matrix A of rank r to a matrix, [

Ir 0
0 0

]
called the Smith normal form of A.

For matrices over Z, we can similarly reduce a matrix to a Smith normal form, but now, the non-zero
entries will not necessarily be equal to 1.

For matrices over Z, we use unimodular row and column operations instead:

(UC1) Replace a column ci by ci + λcj , λ ∈ Z.

(UC2) Interchange two columns ci and cj .

(UC3) Replace a column ci with −ci.

(UR1) Replace a row ri by ri + λrj , λ ∈ Z.

(UR2) Interchange two rows ri and rj .

(UR3) Replace a row ri with −ri.

Elementary row and column operations on a matrix A correspond to multiplying A on the left or
right, respectively, by an elementary matrix. These matrices have determinant ±1, and are hence also
unimodular matrices. From this, unimodular row and column operations correspond to the following
change of bases, where (ei)

n
i=1 is a free basis for Zn (the domain of the linear map A represents) and

(fi)
m
i=1 is a free basis of Zm (the codomain).

(UC1) ei 7→ ei + λej ;

(UC2) ei ↔ ej ;

Algebra I | 60

MA251 7.3 Unimodular Smith Normal Form

(UC3) ei 7→ −ei;

(UR1) fj 7→ fj − λfi (note the sign change and the reversal of indices);

(UR2) fi ↔ fj ;

(UR3) fi 7→ −fi;

Theorem 7.17. Let A be an m×n matrix over Z with rank r. Then, by using a sequence of unimodular
elementary row and column operations, we can reduce A to a matrix

S =

[
D 0
0 0

]
with D = diag(d1,d2, . . . ,dr), where (di)

r
i=1 are positive integers satisfying di|di+1 for 1 ≤ i < r.

Subject to these conditions, the di are uniquely determined by the matrix A.

The matrix S is then called the unimodular Smith normal form of A, or the ZSNF of A.

Lemma 7.18. Let A ∈ Zm×n have unimodular Smith normal form S with r non-zero diagonal entries
(di)

r
i=1. Then, the greatest common divisor of all the entries of A is d1.

Algorithm 9 Smith Normal Form Decomposition
1: Compute the greatest common divisor x of the entries in the first column, and the greatest common

divisor y of the entries in the first row. Without loss of generality, suppose x < y (simply reverse
row and columns in the following, if otherwise).

2: Using the Euclidean algorithm, we can form a row whose first element is x.
3: Move this row to the first row such that x is in the first entry. This is the pivot element (and

row/column).
4: Subtract multiples of the pivot row from every other row until the pivot column has 0s everywhere

else (possible since x divides everything in this column).
5: Repeat this process for the rows. This will likely undo some of our work on the pivot column, but

just repeat this process again. This process is guaranteed to terminate since the greatest common
divisor is reduced with each iteration.

6: Eventually, the pivot column and row will be zero every outside the pivot element. Iterate this
process on each column/row until the matrix is diagonal.

7: The diagonal entries may not satisfy the divisibility requirements of the unimodular Smith normal
form, so we again use the Euclidean algorithm to obtain the greatest common divisor of the diagonal
elements, then add or subtract this value until the divisibility requirements are met.

Rows and columns can also be interchanged, if it makes the Bézout coefficients smaller or if the divisor
is easier to obtain. If it is easy to spot or calculate the greatest common divisor of all the entries of the
matrix, we can shortcut the first few steps somewhat.

Example. Find a ZSNF decomposition of,

A =


−18 −18 −18 90
54 12 45 48
9 −6 6 63
18 6 15 12


It is easy to see that every entry of A is divisible by 3, but for the sake of illustration, we will not use
this shortcut.

Algebra I | 61

MA251 7.3 Unimodular Smith Normal Form

Instead, gcd(−18,54,9,18) = 9 and gcd(−18,− 18,− 18,90) = 9, so we can choose to work on columns or
rows. We already have a 9 in the first column, we will work on the first column:

−18 −18 −18 90
54 12 45 48
9 −6 6 63
18 6 15 12

 r3↔r1−→


9 −6 6 63
54 12 45 48
−18 −18 −18 90
18 6 15 12


Now, clear out the rest of the pivot column,

9 −6 6 63
54 12 45 48
−18 −18 −18 90
18 6 15 12


r2 7→r2−6r1
r3 7→r3+2r1
r4 7→r4−2r1−→


9 −6 6 63
0 48 9 −330
0 −30 −6 216
0 18 3 −114


gcd(9,− 6,6,63) = 3, so, we make a 3 in the pivot row.

9 −6 6 63
0 48 9 −330
0 −30 −6 216
0 18 3 −114

 c1 7→c1−c3−→


3 −6 6 63
−9 48 9 −330
6 −30 −6 216
−3 18 3 −114


Clear the pivot row,

3 −6 6 63
−9 48 9 −330
6 −30 −6 216
−3 18 3 −114


c2 7→c2+2c1
c3 7→c3−2c1
c4 7→c4−21c1−→


3 0 0 0
−9 30 27 −141
6 −18 −18 90
−3 12 9 −51


Clear the pivot column again,

3 0 0 0
−9 30 27 −141
6 −18 −18 90
−3 12 9 −51


r2 7→r2+3r1
r3 7→r3−2r1
r4 7→r4+r1−→


3 0 0 0
0 30 27 −141
0 −18 −18 90
0 12 9 −51


gcd(30,− 18,12) = 6, and gcd(30,26,− 141) = 3, so we will work on the row first this time.

3 0 0 0
0 30 27 −141
0 −18 −18 90
0 12 9 −51

 c2 7→c2−c3−→


3 0 0 0
0 3 27 −141
0 0 −18 90
0 3 9 −51


Clear the row out, 

3 0 0 0
0 3 27 −141
0 0 −18 90
0 3 9 −51

 c3 7→c3−9c1
c4 7→c4+47c1−→


3 0 0 0
0 3 0 0
0 0 −18 90
0 3 −18 90


gcd(3,0,3) = 3, so our pivot is already the correct divisor. Clear the rest of the pivot column,

3 0 0 0
0 3 0 0
0 0 −18 90
0 3 −18 90

 r4 7→r4−r1−→


3 0 0 0
0 3 0 0
0 0 −18 90
0 0 −18 90



Algebra I | 62

MA251 7.4 Subgroups of Free Abelian Groups

From this point, the algorithm would compute gcd(−18,− 18) = 18, and gcd(−18,90) = 9, so we would
then work on the row, but at this point, the matrix is small enough that we can obviously just clear the
last column, then row: 

3 0 0 0
0 3 0 0
0 0 −18 90
0 0 −18 90

 c4 7→c4−5c3−→


3 0 0 0
0 3 0 0
0 0 −18 0
0 0 −18 0



3 0 0 0
0 3 0 0
0 0 −18 0
0 0 −18 0

 r4 7→r4−r3−→


3 0 0 0
0 3 0 0
0 0 −18 0
0 0 0 0



3 0 0 0
0 3 0 0
0 0 −18 0
0 0 0 0

 r3 7→−r3−→


3 0 0 0
0 3 0 0
0 0 18 0
0 0 0 0


In this case, we were lucky in that, the diagonal entries already satisfy the divisibility requirements, so
we are done.

7.4 Subgroups of Free Abelian Groups
Theorem 7.19. Any subgroup of a finitely generated abelian group is finitely generated.

Let H be a subgroup of the free abelian group Zn, and suppose that H = ⟨v1,v2, . . .vm⟩. Then, H can
be represented by a n×m matrix A defined by

A = [v1|v2| . . . |vm]

For example, if n = 3 and H is generated by,

v1 =

 1
3
−1

 , v2 =

20
1


then,

A =

 1 2
3 0
−1 1


If a different free basis (yi)

n
i=1 of Zn with change of basis matrix P is used, then each column vi of A is

replaced by P−1vi, and hence A itself is replaced by P−1A.

For example, if we have the basis

y1 =

 0
−1
0

 , y2 =

10
1

 , y3 =

11
0


of Z3, then,

P =

 0 1 1
−1 0 1
0 1 0

 , P−1

1 −1 −1
0 0 1
1 0 −1

 , P−1A =

−1 1
−1 1
2 1



Algebra I | 63

MA251 7.5 General Finitely Generated Abelian Groups

Theorem 7.20. Suppose that a subgroup H of Zn is represented by the matrix A ∈ Zn×m. Then, if
the matrix B ∈ Zn×m can be obtained by applying unimodular row and column operations on A, then B
represents the same subgroup H of Zn using a (possibly) different free basis of Zn.

In particular, we can transform A to its unimodular Smith normal form, S. So, if S represents the
subgroup H with free basis (yi)

n
i=1 of Zn, then the r non-zero columns of S correspond to the elements

(diyi)
r
i=1. So,

Theorem 7.21. Let H be a subgroup of Zn. Then, there exists a free basis (yi)
n
i=1 of Zn such that

H = ⟨(diyi)
r
i=1⟩, where each di > 0 and di|di+1 for 1 ≤ i < r.

By keeping track of the row operations used, we can find the free basis of Zn such that the matrix of H
has a simple form by applying the operations to the basis vectors.

7.5 General Finitely Generated Abelian Groups
A presentation is one method of specifying a group. A presentation of a group G is composed of a set S
of generators, and set R of relations among those generators. We then say that G has presentation

⟨S | R⟩

For instance, a cyclic group of order n has the presentation,

⟨a | an = id⟩

This is also sometimes written as

⟨a | an⟩

under the convention that any terms without an equals is assumed to be equal to the identity element.
For instance, the dihedral group Dn has presentation,

⟨r,f | rn, f2,(rf)2⟩

where r is a rotation and f a reflection; Z2 has presentation,

⟨x,y | xy = yx⟩

and the free group F (S) on a set S has presentation,

⟨S | ∅⟩

Note that the presentation of a group is not unique.

Let G be a finitely generated abelian group. If G has n generators (xi)
n
i=1, then Theorem 7.14 gives

us a way to define a surjective homomorphism ϕ : Zn → G, and by the first isomorphism theorem, we
can deduce that G ∼= Zn/K, where K = ker(ϕ), so we have proved that every finitely generated abelian
group is isomorphic to a quotient group of a free abelian group.

From the definition of ϕ, we see that K is given by,

K = {v ∈ Zn : ϕ(v) = idG}

=

{
[v1, . . . ,vn]

⊤ ∈ Zn :

n∑
i=1

vixi = idG

}
and, because K is a subgroup of G, which is finitely generated, K is also finitely generated by elements
(vi)

m
i=1 of Zm. The quotient group Zn/K then has presentation,

⟨x1, . . . ,xn | v1, . . . ,vm⟩

Algebra I | 64

MA251 7.5 General Finitely Generated Abelian Groups

(where (xi)
n
i=1 is the standard basis of Zn) and as before, this group is isomorphic to G,

G ∼= ⟨x1, . . . ,xn | v1, . . . ,vm⟩

Now, we can find the unimodular Smith normal form of the matrix of K to find a free basis (yi)
n
i=1 of

Zn such that K =
〈
(diyi)

r
i=1

〉
for some r ≤ n and di > 0 and di|di+1 for 1 ≤ i < r, giving,

G ∼= ⟨y1, . . . ,yn | d1y1, . . . ,drvr⟩

Theorem 7.22. The group,

⟨y1, . . . ,yn | d1y1, . . . ,drvr⟩

is isomorphic to the direct sum of cyclic groups,

Zd1
⊕ Zd2

⊕ · · · ⊕ Zdr
⊕ Zn−r

Putting these results together, we obtain,

Theorem 7.23 (Fundamental Theorem of Finitely Generated Abelian Groups). If G is a finitely gen-
erated abelian group, then G is isomorphic to a direct sum of cyclic groups. More precisely, if G is
generated by n elements, then, for some r with 0 ≤ r ≤ n, there exist integers (di)

r
i=1 with di > 0 and

di|di+1 for 1 ≤ i < r, such that,

G ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr ⊕ Zn−r

or more compactly, (
r⊕

i=1

Zdi

)
⊕ Zn−r

That is, G is isomorphic to the direct sum of r finite cyclic groups of orders d1, . . . ,dr, and n− r infinite
cyclic groups.

There may be some factors Z1 = {id}, which can be omitted from the direct sum (unless it is the only
factor and G ∼= Z1 is trivial). It could be the case that n− r = 0, which occurs if and only if G is finite.
We can also have that di = 1 for all i, which occurs if and only if G is free abelian.

Example. From before, we found that the matrix

A =


−18 −18 −18 90
54 12 45 48
9 −6 6 63
18 6 15 12


has unimodular smith normal form 

3 0 0 0
0 3 0 0
0 0 18 0
0 0 0 0


This means that the group defined by A, which has presentation,〈

x1,x2,x3,x4

∣∣∣∣∣ −18x1 + 54x2 + 9x3 + 18x4, −18x1 + 12x2 − 6x3 + 6x4,
−18x1 + 45x2 + 6x3 + 15x4, 90x1 + 48x2 + 63x3 + 12x4

〉
is isomorphic to,

Z3 ⊕ Z3 ⊕ Z18 ⊕ Z1

which has a maximal finite subgroup of order 3× 3× 18 = 162.

Algebra I | 65

MA251 7.6 Finite Abelian Groups

7.6 Finite Abelian Groups

For any finite abelian group G, we now have G ∼=
⊕r

i=1 Zdi
, where di|di+1 for 1 ≤ i < r and |G| =

d1d2 · · · dr. Because the unimodular Smith normal form is unique, this implies that this decomposition
is also unique, and so, the isomorphism classes of finite abelian groups of order n > 0 are in bijection
with the factorisations of n,

n =

r∏
i=1

di

for which di|di+1 for 1 ≤ i < r. This allows us to classify isomorphism classes of finite abelian groups.

Example.

• n = 4 – the valid decompositions are 2 and 2× 2, so every group of order 4 is isomorphic to Z4 or
Z2 ⊕ Z2.

• n = 15 – the only valid decomposition is 15, so every group of order 15 is isomorphic to Z15 and is
hence necessarily cyclic.

• n = 36 – we have 36, 2×18, 3×12, and 6×6, so groups of order 36 are isomorphic to Z36, Z2⊕Z18,
Z3 ⊕ Z12, or Z6 ⊕ Z6.

Lemma 7.24. Let G =
⊕n

i=1Gi be a finite abelian group. Then, the order of g = (g1,g2, . . . ,gn) is the
least common multiple of the orders |gi| of the components of g.

Algebra I | 66

	Table of Contents
	Review
	Mathematical Interpretation
	Basis Vectors, Span & Linear Independence
	Linear Transformations
	Transformations as Matrix-Vector Multiplication

	Composition as Matrix-Matrix Multiplication
	Change of Basis
	Transformations in Different Bases
	Eigenvectors

	Jordan Canonical Form
	Generalised Eigenspaces
	Cayley-Hamilton Theorem
	Calculating Minimal Polynomials
	Jordan Chains
	Computing the Jordan Canonical Form
	Review

	Matrix Functions
	Matrix Powers
	Lagrange Interpolation
	Matrix Exponentials
	Recurrence Relations
	Differential Equations

	Bilinear Maps
	Bilinear Forms
	Quadratic Forms
	Bases for Quadratic Forms
	The Gram-Schmidt Process
	Orthogonal Transformations
	Orthonormal Bases for Bilinear Forms
	Reduction of Second Degree Polynomial Equations
	Singular Value Decomposition

	Sesqulinear Forms
	Operators on Hilbert Spaces
	Finitely Generated Abelian Groups
	Review
	Free Abelian Groups
	Unimodular Smith Normal Form
	Subgroups of Free Abelian Groups
	General Finitely Generated Abelian Groups
	Finite Abelian Groups

